18
правок
Изменения
Умножения
}}
{{Теорема
| id = thMark
| about = Неравенство Маркова
| statement = Пусть случайная величина <tex>X: \Omega \rightarrow \mathbb R\mathrm+</tex> определена на [[Вероятностное пространство, элементарный исход, событие|вероятностном пространстве]] (<tex>\Omega</tex>, <tex>F</tex>, <tex>\mathbb R</tex>), и ее [[Математическое ожидание случайной величины| математическое ожидание]] <tex> \mathbb E\mathrm |\xi|<\mathcal {1}</tex>. Тогда:
: <tex>\forall ~x > 0~~ \mathbb P\mathrm(|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} </tex>
где:
: <tex> x </tex> {{---}} константа соответствующая некоторому событию в терминах [[Математическое ожидание случайной величины| математического ожидания]]
: <tex> \xi </tex> {{---}} случайная величина
: <tex> \mathbb P\mathrm(|\xi| \geqslant x)</tex> {{---}} вероятность отклонения модуля случайной величины от <tex> x </tex>
: <tex>\mathbb E\mathrm |\xi|</tex> {{---}} [[Математическое ожидание случайной величины| математическое ожидание]] случайной величины
| proof = Возьмем для доказательства следующее понятие:
Пусть <tex> A</tex> {{---}} некоторое событие. Назовем индикатором события <tex>A</tex> случайную величину <tex>I</tex>, равную единице если событие <tex>A</tex> произошло, и нулю в противном случае. По определению величина <tex>I(A)</tex> имеет распределение Бернулли с параметром: :<tex> p = \mathbb P\mathrm (I(A) = 1) = \mathbb P\mathrm (A)</tex>, и ее [[Математическое ожидание случайной величины| математическое ожидание]] равно вероятности успеха <tex> p = \mathbb P\mathrm (A) </tex>.
Индикаторы прямого и противоположного событий связаны равенством <tex>I(A) + I(\overline A) = 1</tex>. Поэтому
:<tex>|\xi|=|\xi|\times cdot I(|\xi|<x)+|\xi|\times cdot I(|\xi|\geqslant x)\geqslant |\xi|\times cdot I(|\xi|\geqslant x)\geqslant x\times cdot I(|\xi| \geqslant x)</tex>.
Тогда
:<tex> \mathbb E |\xi|\geqslant \mathbb E\mathrm(x\times cdot I(|\xi|\geqslant x)) = x\times cdot \mathbb P\mathrm (|\xi|\geqslant x) </tex>.
Разделим обе части на <tex>x</tex>:
:<tex> \mathbb P (|\xi| \geqslant x)\leqslant \dfrac {\mathbb E\mathrm |\xi|}{x} </tex>
{{Определение
|definition = '''Неравенство Чебышева''' (англ. Chebyshev's inequality) является следствием [[#thMark|неравенства Маркова]] и утверждает, что случайная величина в основном принимает значения, близкие к значению [[Математическое ожидание случайной величины| математического ожидания]]. Говоря более точно, оно дает оценку вероятности, что случайная величина примет значение, далекое от своего среднего.
}}
{{Теорема
|about = Неравенство Чебышева
|statement =
Если <tex>\mathbb E\mathrm \xi^2<\mathcal 1</tex>, то <tex>\forall x > 0</tex> будет выполнено
:<tex>\mathbb P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) \leqslant \dfrac {\mathbb D\mathrm \xi}{x^2}</tex>
где:
: <tex>\mathbb E\mathrm \xi^2</tex> {{---}} [[Математическое ожидание случайной величины| математическое ожидание]] квадрата случайного события.
: <tex>E\mathrm \xi</tex> {{---}} [[Математическое ожидание случайной величины| математическое ожидание]] случайного события : <tex> P\mathrm (|\xi - \mathbb E\mathrm \xi| \geqslant x) </tex> {{---}} вероятность отклонения случайного события от его [[Математическое ожидание случайной величины| математического ожидания]] хотя бы на <tex> x</tex>
: <tex> \mathbb D\mathrm \xi </tex> {{---}} [[Дисперсия случайной величины|дисперсия случайного события]]
|proof = Для <tex>x>0</tex> неравенство <tex>|\xi-\mathbb E\mathrm \xi| \geqslant x</tex> равносильно неравенству <tex>(\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2</tex>, поэтому
<tex>\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \geqslant x) = \mathbb P\mathrm((\xi-\mathbb E\mathrm \xi)^2 \geqslant x^2 ) \leqslant \dfrac {\mathbb E\mathrm(\xi-\mathbb E\mathrm\xi)^2}{x^2} = \dfrac {\mathbb D\mathrm \xi}{x^2}</tex>
}}
== Следствие ==
Как следствие получим так называемое "правило трех сигм", которое означает, что вероятность случайной величины отличаться от своего [[Математическое ожидание случайной величины| математического ожидания]] более чем на три корня из [[Дисперсия случайной величины|дисперсии]] мала.
{{Утверждение
| statement = Если <tex>\mathbb E\mathrm \xi^2 < \mathcal {1}</tex>, то
<tex>\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi| \leqslant 3\sqrt{
\mathbb D\mathrm \xi})\geqslant \dfrac {8}{9}</tex>.
: <tex>\mathbb P\mathrm (|\xi-\mathbb E\mathrm \xi|\geqslant 3\sqrt{\mathbb D\mathrm \xi})\leqslant \dfrac {\mathbb D\mathrm \xi}{(3\sqrt{\mathbb D\mathrm \xi})^2} = \dfrac {1} {9}</tex>
Отсюда заметим, что вероятность отклониться значению случайной величины от значения [[Математическое ожидание случайной величины| математического ожидания]] меньше чем <tex>\dfrac {1}{9}</tex>