Изменения

Перейти к: навигация, поиск

Шифратор и дешифратор

3443 байта добавлено, 19:06, 4 сентября 2022
м
rollbackEdits.php mass rollback
<div style="background-color: #ABCDEF; font-size: 16px; font-weight: bold; color: #000000; text-align: center; padding: 4px; border-style: solid; border-width: 1px;">Эта статья находится в разработке!</div>
<includeonly>[[Категория: В разработке]]</includeonly>
 
{{Определение
|definition='''ДешифраторШифратор''' (англ. ''decoderencoder'') — [[Реализация булевой функции схемой из функциональных элементов| логическая схема]], имеющая <tex>2^n</tex> входов <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{2^n-1}</tex> и <tex>2^n</tex> выходов <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{2^n-1}</tex>. На все выходы подаётся Если на <tex>0i</tex>, кроме выхода -ый вход <tex>z_is_i</tex>, на который подаётся подать <tex>1</tex>, где а на остальные входы — <tex>i0</tex> — число, которое закодировано входами то выходы <tex>s_0z_0</tex>, <tex>s_1z_1</tex>, <tex>\ldots</tex>, <tex>s_z_{n-1}</tex>будут кодировать число <tex>i</tex>.
}}
{{Определение
|definition='''ШифраторДешифратор''' (англ. ''decoder'') — логическая схема, имеющая <tex>2^n</tex> входов <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{2^n - 1}</tex> и <tex>2^n</tex> выходов <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{2^n-1}</tex>. Если На все выходы подаётся <tex>0</tex>, кроме выхода <tex>z_i</tex>, на который подаётся <tex>1</tex>, где <tex>i</tex>-ый вход — число, которое закодировано входами <tex>s_is_0</tex> подать , <tex>1s_1</tex>, а на остальные входы — <tex>0\ldots</tex>, то выходы будут кодировать число <tex>is_{n-1}</tex>.
}}
 
==Принцип работы шифратора==
 
[[File:4-to-2encoder.png|thumb|180px|Шифратор 4-to-2]]
 
Принцип работы шифратора заключается в том, что выходы <tex>z_0</tex>, <tex>z_1</tex>, <tex>\ldots</tex>, <tex>z_{n-1}</tex> кодируют один из входов <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{2^n-1}</tex> в двоичной системе счисления. Очевидно, что если подать на несколько входов значение <tex>1</tex>, то такая схема будет работать некорректно. В качестве примера рассмотрим шифратор <tex>4</tex>-to-<tex>2</tex>. Если <tex>s_0 = 1</tex>, то <tex>z_0 = z_1 = 0</tex>, если же <tex>s_1 = 1</tex>, то <tex>z_0 = 1</tex> и <tex>z_1 = 0</tex>. Остальные случаи разбираются аналогичным образом.
 
{| class="wikitable"
|-align="center"
! <tex>S_0</tex> !! <tex>S_1</tex> !! <tex>S_2</tex> !! <tex>S_3</tex> !! <tex>Z_0</tex> !! <tex>Z_1</tex>
|-align="center"
| <tex>\textbf{1}</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex>
|-align="center"
| <tex>0</tex> || <tex>\textbf{1}</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>1</tex>
|-align="center"
| <tex>0</tex> || <tex>0</tex> || <tex>\textbf{1}</tex> || <tex>0</tex> || <tex>1</tex> || <tex>0</tex>
|-align="center"
| <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>\textbf{1}</tex> || <tex>1</tex> || <tex>1</tex>
|}
 
==Логическая схема шифратора==
 
Построить логическую схему шифратора можно следующим образом: давайте будем использовать гейт <tex>OR</tex>, который имеет <tex>m</tex> входов (где <tex>m</tex> — какое-то натуральное число), и на выходе возвращает <tex>0</tex>, если на всех его входах будет подано <tex>0</tex>, в противном случае этот гейт вернёт <tex>1</tex>. Давайте рядом с каждым выходом <tex>z_i</tex> поставим гейт <tex>OR</tex>, и будем, по необходимости, расширять этот гейт. Тогда для каждого входа рассмотрим двоичное представление номера этого входа, и если на <tex>i</tex>-ом месте стоит <tex>1</tex>, то соединим этот вход с гейтом <tex>OR</tex>, который соединён с выходом <tex>z_i</tex>. Очевидно, если подать ровно на один вход <tex>1</tex>, то выходы будут кодировать это число в двоичном представлении (если подать <tex>1</tex> на вход <tex>s_0</tex>, то на всех выходах будет <tex>0</tex>, а сам вход не будет соединён ни с каким гейтом).
 
{|
|[[Файл:LogicSircuit2to1encoder.png|thumb|360px|Логическая схема шифратора <tex>2</tex>-to-<tex>1</tex>]]
|[[Файл:LogicSircuit4to2encoder.png|thumb|360px|Логическая схема шифратора <tex>4</tex>-to-<tex>2</tex>]]
|}
==Принцип работы дешифратора==
[[Файл:2to4decoder.png|thumb|180px|Дешифратор <tex>2</tex>-to-<tex>4</tex>]]
Суть дешифратора заключается в том, что с помощью <tex>n</tex> входов <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex> можно задавать выход, на который будет подаваться <tex>1</tex>. Для того, чтобы лучше понять, как работает дешифратор, рассмотрим в качестве примера дешифратор <tex>2</tex>-to-<tex>4</tex> (это значит, что у этого дешифратора есть два входа <tex>s_0</tex> и <tex>s_1</tex> и четыре выхода <tex>z_0</tex>, <tex>z_1</tex>, <tex>z_2</tex> и <tex>z_3</tex>). Если <tex>s_0 = s_1 = 0</tex>, то на выходе <tex>z_0</tex> будет значение <tex>1</tex>, на остальных выходах будет <tex>0</tex>. Если же <tex>s_0 = 1</tex>, <tex>s_1 = 0</tex>, то на выходе <tex>z_1</tex> будет <tex>1</tex>, на остальных выходах будут <tex>0</tex>. Если <tex>s_0 = 0</tex>, <tex>s _1 = 1</tex>, то на выходе <tex>z_2</tex> будет <tex>1</tex>, а на остальных входах будет <tex>0</tex>. Если же <tex>s_0 = s_1 = 1</tex>, то на выходе <tex>z_3</tex> будет <tex>1</tex>, а на других — <tex>0</tex>. Для более ясной картины обратимся к таблице истинности.
{| class="wikitable"
==Логическая схема дешифратора==
Давайте построим логическую схему дешифратора рекурсивным способом: допустим, что мы построили схему для <tex>n-1</tex> входа, теперь попробуем слить <tex>n</tex>-ый выход с предыдущими <tex>n-1</tex>. Для <tex>n=1</tex> схема выглядит тривиальным образом: от входа <tex>s_0</tex> отходят два провода, один напрямую соединён с выходом <tex>z_0z_1</tex>, другой соединён с гейтом <tex>NOT</tex>, а гейт <tex>NOT</tex> соединён с выходом <tex>z_1z_0</tex>. Теперь допустим, что мы можем построить схему для <tex>n-1</tex> входов. Тогда <tex>n</tex>-ый вход соединим с дешифратором <tex>1</tex>-to-<tex>2</tex>, а первые <tex>n-1</tex> входы соединим с дешифратором <tex>(n-1)</tex>-to-<tex>(2^{n-1})</tex> и потом соединим каждый выход дешифратора <tex>(n-1)</tex>-to-<tex>(2^{n-1})</tex> с каждым выходом дешифратора <tex>1</tex>-to-<tex>2</tex> с помощью гейтов <tex>AND</tex>, потом соединим соответствующие гейты с выходами <tex>z_i</tex> таким образом, чтобы значение на входе <tex>z_i</tex> было равно <tex>1</tex> только в том случае, если число <tex>i</tex> кодируется входами <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>. Очевидно, что мы таким образом перебрали всевозможные комбинации значений на входах <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>, поэтому наша схема будет работать верно.
{|
|}
==Принцип работы шифратораИспользование в реальной жизни==  {| class="wikitable"|-align="center"! <tex>S_0</tex> !! <tex>S_1</tex> !! <tex>S_2</tex> !! <tex>S_3</tex> !! <tex>Z_0</tex> !! <tex>Z_1</tex>|-align="center"| <tex>\textbf{1}</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex>|-align="center"| <tex>0</tex> || <tex>\textbf{1}</tex> || <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>1</tex>|-align="center"| <tex>0</tex> || <tex>0</tex> || <tex>\textbf{1}</tex> || <tex>0</tex> || <tex>1</tex> || <tex>0</tex>|-align="center"| <tex>0</tex> || <tex>0</tex> || <tex>0</tex> || <tex>\textbf{1}</tex> || <tex>1</tex> || <tex>1</tex>Принцип работы дешифратора используется при построении [[Мультиплексор|}мультиплексора и демультиплексора]]. Также шифраторы и дешифраторы используются в том случае, когда надо передавать большое количество данных, при этом использовать много проводов затруднительно (к примеру телеграф). В этом случае они позволяют использовать малое количество проводов, обеспечивая при этом наибольшее возможное количество состояний, которое может быть передано.
==См. также==
*[[Реализация булевой функции схемой из функциональных элементов]]
*[[Метод Лупанова синтеза схем]]
*[[Мультиплексори демультиплексор]]
==Источники информации==
*[https://en.wikipedia.org/wiki/Priority_encoder Wikipedia - Priority encoder]
*[https://en.wikipedia.org/wiki/Binary_decoder Wikipedia - Binary decoder]
*[https://www.efxkits.us/different-types-encoder-decoder-applications different-types-encoder-decoder-applicationsDifferent Types of Encoder and Decoder and Its Uses]
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Схемы из функциональных элементов ]]
1632
правки

Навигация