Изменения
иначе происходит эксплуатация ещё не доказанной теореммы в предложении 4 абзаца про существование
Каждое натуральное число <tex>n>1</tex> представляется в виде <tex>n=p_1\cdot\dots\cdot p_k</tex>, где <tex>p_1,\dots,p_k</tex> — [[простые числа]], причём такое представление единственно с точностью до порядка следования сомножителей.
|proof=
'''Существование'''. Пусть <tex>n</tex> — наименьшее натуральное число, неразложимое в произведение простых чисел, предполагая, что оно уже доказано для любого другого числа, меньшего <tex>n</tex>. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если <tex>n</tex> составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел(уже доказано ранее), значит, <tex>n</tex> тоже является произведением простых чисел. Противоречие.
'''Единственность'''. Пусть <tex>n</tex> — наименьшее натуральное число, разложимое в произведение простых чисел двумя разными способами. Если оба разложения пустые — они одинаковы. В противном случае, пусть <tex>p</tex> — любой из сомножителей в любом из двух разложений. Если <tex>p</tex> входит и в другое разложение, мы можем сократить оба разложения на <tex>p</tex> и получить два разных разложения числа <tex>\dfrac{n}{p}</tex>, что невозможно. А если <tex>p</tex> не входит в другое разложение, то одно из произведений делится на <tex>p</tex>, а другое — не делится (как следствие из леммы Евклида, см. выше), что противоречит их равенству.