436
правок
Изменения
м
small changes
|about=о гигантской компоненте
|statement=Рассмотрим модель <tex>G(n, p)</tex>. Пусть <tex>p = \dfrac{ c }{n}</tex>.
Если <tex>c < 1</tex>, то найдется такая константа <tex>\beta</tex>, зависящая от <tex>c</tex>, что а.п.н. (асимптотически почти наверное) размер каждой связной компоненты случайного графа не превосходит <tex>\beta \ln n</tex>.
Если же <tex>c > 1</tex>, то найдется такая константа <tex>\gamma</tex>, зависящая от <tex>c</tex>, что а.п.н. в случайном графе есть ровно одна компонента размера <tex>\geq\gamma n</tex>. Размер остальных компонент не превосходит <tex>\beta \ln n</tex>.
|proof=
Приведем здесь идеи<ref>Введение в математическое моделирование транспортных потоков: Учебное пособие/Издание 2-е, испр. и доп. А. В. Гасников и др. Под ред. А. В. Гасникова.{{---}} М.: МЦНМО, 2013 {{---}} C.330-339 {{---}} ISBN 978-5-4439-0040-7</ref>, изложенные А.М. Райгородским, основанные на доказательстве<ref>Karp R. The transitive closure of a random digraph//Random structures and algorithms. 1990. V. 1. P. 73–94.</ref> Р. Карпа. Такой формат позволит понять основные идеи и логику данного доказательстварассуждений. Строгий вариант приведен в <ref name="trueproof">Алон Н., Спенсер Дж. Вероятностный метод. М.: Бином. Лаборатория знаний, 2007.</ref>.
'''Случай <tex>c < 1</tex>'''.