Изменения

Перейти к: навигация, поиск

Задача планирования движения

4 байта убрано, 01:29, 23 января 2021
м
Исправление нумерации изображений и форматирования
== Этапы ==
[[Файл:MotionPlanningMLUsage.png|centerleft|thumb|600px|''Рисунок х3.'' Процент решений, использующих машинное обучения, на каждом этапе<ref name="lyft-ml-motion-planning"/>]]
=== Восприятие/анализ обстановки (англ. ''Perception'')===
Зачастую осуществляется путем применения алгоритмов машинного обучения для [[Задача нахождения объектов на изображении|распознавания объектов]] на изображениях и прочих массивах данных (таких как данные с датчиков).
[[Файл:AutoCarPerception.jpg|left|thumb|300px|''Рисунок х4.'' Визуализация восприятия автомобилем изображения с камеры<ref>[https://www.eenewsautomotive.com/news/deep-learning-method-improves-environment-perception-self-driving-cars Christoph Hammerschmidt (2020) "Deep learning method improves environment perception of self-driving cars"]</ref>]]
<div style="clear:{{{1|both}}};"></div>
Этот этап будет подробно рассмотрен далее.
[[Файл:AutoCarPrediction.png|left|thumb|300px|''Рисунок х5.'' Предсказание движения окружающих объектов<ref>[https://medium.com/lyftself-driving/fueling-self-driving-research-with-level-5s-open-prediction-dataset-f0175e2b0cf8 Sacha Arnoud, Peter Ondruska (2020) "Fueling Self-Driving Research with Level 5’s Open Prediction Dataset"]</ref>]]
<div style="clear:{{{1|both}}};"></div>
Как правило осуществляется с помощью дискретизации пространства и последующего применения алгоритмов на графах, например различных вариаций [https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree RRT алгоритмов], для поиска оптимальной траектории. В последнее время также становятся более актуальными решения с применением машинного обучения {{---}} в частности, подходы на основе имитационного обучения и обратного [[Обучение с подкреплением|обучения с подкреплением]]<ref>[https://towardsdatascience.com/inverse-reinforcement-learning-6453b7cdc90d Alexandre Gonfalonieri (2018) "Inverse Reinforcement Learning {{---}} Introduction and Main Issues"]</ref><ref>[https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_417 Abbeel P., Ng A.Y. (2011) "Inverse Reinforcement Learning"]</ref>, обученные на большом количестве примеров, предоставленных человеком<ref name="lyft-ml-motion-planning">[https://medium.com/lyftself-driving/the-next-frontier-in-self-driving-using-machine-learning-to-solve-motion-planning-a259b814e9ad Peter Ondruska, Sammy Omari (2020) "The Next Frontier in Self-Driving: Using Machine Learning to Solve Motion Planning"]</ref>.
[[Файл:AutoCarPlanning.png|left|thumb|300px|''Рисунок х6.'' Планирование траектории движения<ref>[https://medium.com/lyftself-driving/virtual-validation-a-scalable-solution-to-test-navigate-the-autonomous-road-ahead-e1a7d1fe1538 Robert Morgan, Mason Lee (2020) "Virtual Validation: A Scalable Solution to Test & Navigate the Autonomous Road Ahead"]</ref>]]
<div style="clear:{{{1|both}}};"></div>
=== Стандартный подход ===
[[Файл:IMMPrecision.png|right|thumb|300px|''Рисунок х7.'' Точность IMM по сравнению с точностью одной модели (константной скорости) с высокой и низкой степенью доверия предсказанию<ref>[https://www.mathworks.com/help/fusion/ug/tracking-maneuvering-targets.html "Tracking Maneuvering Targets", MathWorks]</ref>]]
Одна из основных сложностей в предсказании траекторий движения объектов заключается в неопределенности, которая появляется из-за погрешностей в измерениях сенсоров и невозможности однозначно предсказать действия объектов. Для смягчения этой проблемы применяются фильтры, которые приближают текущую позицию исходя из измерений сенсоров и наших предсказаний, а также степени уверенности в результатах обоих.
Также проблематичным является тот факт, что одной модели (особенно простой) как правило недостаточно для описания траектории движения объекта. В связи с этим существует алгоритм, использующий множество взаимодействующих моделей (англ. ''Interacting Multiple Model, IMM'') {{---}} подход применения сразу нескольких моделей, для каждой из которых поддерживается актуальная (меняющаяся по мере прошествия времени и получения новых измерений) вероятность того, что объект двигается согласно этой модели. Таким образом, используя, например, модель для каждого возможного движения, такого как поворот или ускорение, мы можем делать более точные предположения о том, где объект будет находиться в будущем.
[[Файл:IMMDiagram.png|left|thumb|400px|''Рисунок х8.'' Диаграмма процесса работы IMM<ref>[https://www.ksae.org/func/download_journal.php?path=L2hvbWUvdmlydHVhbC9rc2FlL2h0ZG9jcy91cGxvYWQvam91cm5hbC8yMDE5MTIyODE5MzI1OS44MDUxLjMuMS5wZGY=&filename=MTlBS1NBRV9EMDYyLnBkZg==&bsid=46256 Jongwon Park, Jaeho Choi, Kunsoo Huh (2019) "Interacting Multiple Model Filter for Multi-Sensor Data Fusion System"]</ref>. На картинке KF означает [https://ru.wikipedia.org/wiki/%D0%A4%D0%B8%D0%BB%D1%8C%D1%82%D1%80_%D0%9A%D0%B0%D0%BB%D0%BC%D0%B0%D0%BD%D0%B0 фильтр Калмана] (англ. ''Kalman filter'') {{---}} один из возможных предсказательных алгоритмов]]
<div style="clear:{{{1|both}}};"></div>
{|align="center" cellpadding="0" cellspacing="0" style="margin: 0 auto;"
|[[Файл:CarCircleRepresentation.png|thumb|400px|''Рисунок 39.'' Для удобства вычисления расстояний представим автомобиль в виде набора окружностей<ref name="yandex-lecture">[https://habr.com/ru/company/yandex/blog/340674/ Клюев Л. (2017) "Алгоритмы построения пути для беспилотного автомобиля. Лекция Яндекса", Хабр]</ref>]] |[[Файл:SpaceObstacleGradientField.png|thumb|400px|''Рисунок 410.'' Для плавной функции расстояния до препятствий введем поле градиентов<ref name="yandex-lecture"/>]]
|}
От окружностей очень легко считать расстояния до чего угодно и очень легко проверять окружность на пересечения с остальными геометрическими примитивами. Если расстояние до центра меньше, чем радиус, можно утверждать, что объекты пересекаются.
Что нужно, чтобы плавно изменялось расстояние? Евклидово расстояние до невыпуклых многоугольников не обладает необходимыми свойствами и плохо дифференцируемо в местах, где наблюдается отсутствие выпуклости. Поэтому можно построить псевдорасстояние по градиентному полю до ломаной, которая обозначена на ''Рис. 410'' красным и представляет собой препятствие. Введем поле расстояний от каждой точки до этой ломаной, которое направлено в сторону ломаной и обладает необходимыми свойствами дифференцируемости — пусть и не являясь строго кратчайшим. Это позволит построить гладкую и аккуратную траекторию.
'''Преимущества:'''
Существуют также [https://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%BE%D1%85%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%BD%D0%BE%D1%81%D1%82%D1%8C стохастические] алгоритмы, которые работают некоторым случайным образом и позволяют построить приближенный маршрут достаточно быстро и удобно. Алгоритм не ищет оптимальные способы объехать препятствие, а просто исследует пространство в разные стороны, но каждый раз делая это из наиболее исследованного участка к наименее изученному.
[[Файл:RRT_animation.gif|right|thumb|300px| ''Рисунок 511.''. Анимация 10000 итераций работы алгоритма RRT <ref name="RRT_wiki">[https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree Rapidly-exploring random tree]</ref>]]
Самым распространенным стохастическим алгоритмом является построение быстро исследующего случайного дерева ([https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree Rapidly-exploring Random Tree, RRT]) или деревьев на его основе (RRT*<ref>[https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-212319121378 Tim Chin (2019) "Robotic Path Planning: RRT and RRT*: Exploring the optimized version of a orthodox path planning algorithm"]</ref> и прочие).
=== Специализированные алгоритмы ===
[[Файл:LaneChangePaths.png|thumb|500px;left|''Рисунок 612.'' Построение и выбор плавной траектории смещения<ref name="yandex-lecture"/>]]
В городе нет абстрактных точек А и Б и неструктурированного окружения со случайными препятствиями. На подобных сценах все относительно понятно: есть конкретные полосы и движение машины почти всегда заключается в том, что автомобиль едет примерно по центру полосы; иногда смещается левее или правее, чтобы объехать препятствие; иногда перестраивается, чтобы по правилам дорожного движения повернуть в нужном направлении.
43
правки

Навигация