Изменения

Перейти к: навигация, поиск

Основная теорема арифметики

26 байт убрано, 20:50, 28 мая 2011
Собственно теорема
|id=th666
|statement=
Каждое натуральное число <mathtex>n>1</mathtex> представляется в виде <mathtex>n=p_1\cdot\dots\cdot p_k</mathtex>, где <mathtex>p_1,\dots,p_k</mathtex> — [[простые числа]], причём такое представление единственно с точностью до порядка следования сомножителей.
|proof=
'''Существование'''. Пусть <mathtex>n</mathtex> — наименьшее натуральное число, неразложимое в произведение простых чисел. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если <mathtex>n</mathtex> составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел, значит, <mathtex>n</mathtex> тоже является произведением простых чисел. Противоречие.
'''Единственность'''. Пусть <mathtex>n</mathtex> — наименьшее натуральное число, разложимое в произведение простых чисел двумя разными способами. Если оба разложения пустые — они одинаковы. В противном случае, пусть <mathtex>p</mathtex> — любой из сомножителей в любом из двух разложений. Если <mathtex>p</mathtex> входит и в другое разложение, мы можем сократить оба разложения на <mathtex>p</mathtex> и получить два разных разложения числа <mathtex>n/p</mathtex>, что невозможно. А если <mathtex>p</mathtex> не входит в другое разложение, то одно из произведений делится на <mathtex>p</mathtex>, а другое — не делится (как следствие из леммы Евклида, см. выше), что противоречит их равенству.
}}
[[Категория: Классы чисел]]
153
правки

Навигация