Доказательство нерегулярности языков: лемма о разрастании — различия между версиями
Zarubkin (обсуждение | вклад) |
|||
(не показано 58 промежуточных версий 12 участников) | |||
Строка 1: | Строка 1: | ||
− | [[ | + | '''Лемма о разрастании''' (лемма о накачке, англ. ''pumping lemma'') — лемма, позволяющая во многих случаях проверить, является ли данный язык [[Регулярные языки: два определения и их эквивалентность|регулярным]]. |
+ | == Лемма о разрастании == | ||
+ | |||
+ | {{Лемма | ||
+ | |id= ==lemma== | ||
+ | |about=о разрастании, о накачке | ||
+ | |statement= | ||
+ | Пусть <tex>L</tex> — [[Регулярные языки: два определения и их эквивалентность|регулярный язык]] над алфавитом <tex>\Sigma</tex>, тогда существует такое <tex>n</tex>, что для любого слова <tex> \omega \in L</tex> длины не меньше <tex>n</tex> найдутся слова <tex> x,y,z \in \Sigma^*</tex>, для которых верно: <tex>xyz=\omega, y\neq \varepsilon, |xy|\leqslant n</tex> и <tex>\forall k \geqslant 0~xy^{k}z\in L</tex>. | ||
+ | |proof= | ||
+ | [[Файл:Consp_lemma.png||left|240px|]] Пусть <tex>L</tex> — регулярный язык над алфавитом <tex>\Sigma</tex>. Поскольку [[Теорема Клини (совпадение классов автоматных и регулярных языков)|регулярный язык является автоматным]], то найдётся автомат <tex>A</tex>, допускающий язык <tex>L</tex>. Пусть <tex>n</tex> — размер автомата. Докажем, что <tex>n</tex> удовлетворяет условию леммы. | ||
+ | <br/>Возьмём произвольное слово <tex>\omega</tex> длины не меньше <tex>n</tex> из языка <tex>L</tex>. Рассмотрим переходы в автомате <tex>\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\varepsilon\rangle, \: l\geqslant n</tex>. Так как <tex>l</tex> не меньше количества состояний в автомате <tex>n</tex>, то в переходах будет совпадение. Пусть <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение. Тогда, повторяя участок слова <tex>\omega</tex>, который отвечает за переход от <tex>u_i</tex> к <tex>u_j</tex>, получаем слово, допускаемое автоматом. То есть, если верно <tex>\langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>, то тогда верно <tex>\langle s, xy^kz\rangle \vdash^*\langle u_i, y^kz\rangle\vdash^*\langle u_j, y^{k-1}z\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>. Тогда автомат <tex>A</tex> допускает слово <tex>xy^kz</tex>, следовательно <tex>xy^kz</tex> принадлежит регулярному языку <tex>L</tex>.<br /> | ||
+ | Наконец, поскольку <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение, среди состояний <tex>s, u_1, \ldots, u_i, \ldots, u_{j-1}</tex> нет повторяющихся. Значит, выполняется требование <tex>|xy| \leqslant n</tex>. | ||
+ | }} | ||
+ | '''Замечание.''' Условие леммы не является достаточным для регулярности языка. ''(См. [[#Пример нерегулярного языка, для которого выполняется лемма о разрастании|пример]])'' | ||
+ | |||
+ | == Лемма о разрастании в общем виде == | ||
{{Лемма | {{Лемма | ||
− | |about= | + | |id= ==lemma== |
+ | |about=о разрастании, о накачке в общем виде | ||
|statement= | |statement= | ||
− | + | Если язык <tex>L</tex> является регулярным, то существует число <tex>n \geqslant 1</tex> такое что для любого слова <tex>uwv</tex> из языка <tex>L</tex>, где <tex>|w| \geqslant n</tex> может быть записано в форме <tex>uwv = uxyzv</tex>, | |
+ | где слова <tex>x</tex>, <tex>y</tex> и <tex>z</tex> такие, что <tex>|xy| \leqslant n</tex>, <tex>|y| \geqslant 1</tex> и <tex>uxy^izv</tex> принадлежит языку <tex>L</tex> для любого целого числа <tex>i \geqslant 0</tex>. | ||
|proof= | |proof= | ||
− | + | Исходя из формулировки леммы в общем виде, стандартная версия леммы, которая описана выше, является особым случаем, в котором строки <tex>u</tex> и <tex>v</tex> пусты. | |
+ | Доказательство леммы в общем виде аналогично доказательству стандартной версии леммы, с тем отличием, что строки <tex>u</tex> и <tex>v</tex> теперь могут быть как не пусты, так и пусты. | ||
− | |||
}} | }} | ||
+ | '''Замечание.''' Поскольку лемма в общем виде накладывает более жесткие требования на язык, то она может быть использована для доказательства нерегулярности многих других языков, таких как <tex> L =\{ a^mb^nc^n : m \geqslant 1 , n \geqslant 1 \}</tex>. | ||
+ | == Использование леммы для доказательства нерегулярности языков == | ||
− | + | Для доказательства нерегулярности языка часто удобно использовать отрицание леммы о разрастании. Пусть <tex>L</tex> — язык над алфавитом <tex>\Sigma</tex>. Если для любого натурального <tex>n</tex> найдётся такое слово <tex>\omega</tex> из данного языка, что его длина будет не меньше <tex> n</tex> и при любом разбиении на три слова <tex>x,y,z</tex> такие, что <tex>y</tex> непустое и длина <tex>xy</tex> не больше <tex>n</tex>, существует такое <tex>k</tex>, что <tex>xy^kz \notin L</tex>, то язык <tex>L</tex> нерегулярный. | |
− | + | Рассмотрим такой подход на примере языка правильных скобочных последовательностей. Для фиксированного <tex>n</tex> предъявляем слово <tex>\omega=(^n)^n</tex>. Пусть <tex>\omega</tex> как-то разбили на <tex>x, y, z</tex>. Так как <tex>|xy|\leqslant n</tex>, то <tex>y=(^b</tex>, где <tex>b > 0</tex>. Для любого такого разбиения берём <tex>k=2</tex> и получаем <tex>xy^kz=(^{n+b})^n</tex>, что не является правильной скобочной последовательностью. Значит, язык правильных скобочных последовательностей нерегулярен. | |
+ | == Пример нерегулярного языка, для которого выполняется лемма о разрастании== | ||
+ | ===Пример языка, удовлетворяющего стандартной версии леммы=== | ||
+ | Рассмотрим следующий язык: <tex>L= \{ a^{i}b^{j}c^{k} \mid i \ne 1, j \geqslant 0, k \geqslant 0\} \cup \{ ab^{i}c^{i} \mid i \geqslant 1\}</tex> | ||
− | ''' | + | '''Докажем, что он нерегулярный.''' Для этого рассмотрим вспомогательный язык <tex>L'= \{ ab^{i}c^{i} \mid i \geqslant 1\}</tex> и докажем его нерегулярность. Воспользуемся предложенным в предыдущем пункте подходом. Для фиксированного <tex>n</tex> выберем слово <tex>\omega=ab^nc^n</tex>. Заметим, что при любом разбиении <tex>\omega</tex> на <tex>x, y, z</tex> слово <tex> y </tex> не пусто (по условию леммы) и содержит только символы <tex> a </tex> и <tex> b </tex> (согласно выбранному слову и условию из леммы <tex>|xy|\leqslant n</tex>). Это означает, что при <tex> k = 0 </tex> слово <tex>xy^kz</tex> либо не содержит символа <tex> a </tex>, либо количество символов <tex> b</tex> меньше <tex> n </tex>. В обоих случаях полученное слово не принадлежит языку. Значит язык <tex> L' </tex> нерегулярный. |
− | |||
− | |||
− | + | Предположим, что язык <tex> L </tex> регулярный. Заметим, что <tex>L' = L \cap \{ab^{*}c^{*}\} </tex>. В силу того, что пересечение регулярных языков регулярно, имеем в правой части равенства регулярный язык. При этом в левой части стоит язык, нерегулярность которого была доказана ранее. Значит наше предположение неверно, и язык <tex> L </tex> нерегулярный. | |
− | |||
+ | '''Докажем, что язык удовлетворяет лемме о разрастании.''' Выберем в лемме <tex> n = 2 </tex>. Это означает, что длина рассматриваемых слов не меньше <tex> 2 </tex> (иными словами <tex> i + j + k \geqslant 2 \,</tex>). Для каждого случая значений <tex> i, j, k </tex> выберем соответствующие слова <tex> x, y </tex> и <tex> z </tex> из леммы. Легко проверить, что в каждом из приведенных ниже случаев условие леммы выполняется: | ||
+ | # <tex> i = 0, j = 0, k \geqslant 2 </tex>. Слово имеет вид <tex>\omega=c^k</tex>. Выберем <tex> x = \varepsilon, y = c, z = c^{k-1}</tex>. | ||
+ | # <tex> i = 0, j \geqslant 1, k \geqslant 0 </tex>. Слово имеет вид <tex>\omega=b^jc^k</tex>. Выберем <tex> x = \varepsilon, y = b, z = b^{j-1}c^k</tex>. | ||
+ | # <tex> i = 1, j \geqslant 1, j = k </tex>. Слово имеет вид <tex>\omega=ab^jc^j</tex>. Выберем <tex> x = \varepsilon, y = a, z = b^jc^j</tex>. | ||
+ | # <tex> i = 2, j \geqslant 1, k \geqslant 1 </tex>. Слово имеет вид <tex>\omega=aab^jc^k</tex>. Выберем <tex> x = \varepsilon, y = aa, z = b^jc^k</tex>. | ||
+ | # <tex> i \geqslant 3, j \geqslant 1, k \geqslant 1 </tex>. Слово имеет вид <tex>\omega=aaaa^{i-3}b^jc^k</tex>. Выберем <tex> x = \varepsilon, y = a, z = aaa^{i-3}b^jc^k</tex>. | ||
− | ''' | + | '''Таким образом''', язык <tex> L </tex> удовлетворяет второй части леммы и при этом является нерегулярным, что доказывает тот факт, что лемма о разрастании '''не''' является достаточным для регулярности языка. |
− | Рассмотрим | + | ===Пример языка, удовлетворяющего лемме в общем виде=== |
+ | Рассмотрим другой пример. | ||
+ | |||
+ | <tex>L_1 = \{ uvwxy \mid u, y \in \{ 0,1 ,2,3 \}^* \wedge v,w,x \in \{ 0,1,2,3 \} \wedge ( v = w \vee v = x \vee x =w) \}</tex> | ||
+ | |||
+ | <tex>L_2 = \{ w \mid w \in \{ 0,1 ,2,3 \}^* \wedge</tex> <tex>\dfrac{1}{7}</tex> из символов слова <tex>w</tex> является символом <tex>3 \} </tex> | ||
+ | |||
+ | <tex>L = L_1 \cup L_2</tex> | ||
+ | |||
+ | '''Докажем, что он нерегулярный.''' Предположим, что некоторая строка языка <tex>L</tex> имеет длину <tex>n=5</tex>. Поскольку в алфавите всего четыре символа, то как минимум два символа из пяти в этой строке будут одинаковыми, и они разделены максимум тремя символами: | ||
+ | :Если дубликаты разделены нулями или единицами, накачаем один из двух остальных символов в строке, которые не повлияют на подстроку, которая содержит дубликаты. | ||
+ | :Если дубликаты разделены двойками или тройками, накачаем <tex>2</tex> символа, разделяющих их. Накачка также уменьшает или увеличивает результат во время создания подстроки размера <tex>3</tex>, которая содержит <tex>2</tex> продублированных символа. | ||
+ | Второе условие языка <tex>L</tex> обеспечивает, что <tex>L</tex> — нерегулярный, то есть в нем бесконечное число строк, которые принадлежат <tex>L</tex>, но не могут быть получены путям разрастания некоторой меньшей строки в <tex>L</tex>. | ||
+ | |||
+ | == См. также == | ||
+ | * [[Лемма о разрастании для КС-грамматик]] | ||
+ | * [[Булевые формулы с кванторами как игры для двух игроков]] | ||
+ | |||
+ | == Источники информации == | ||
+ | * [http://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages Wikipedia — Pumping lemma for regular languages] | ||
+ | * Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — М.:Издательский дом «Вильямс», 2002. — С. 144. — ISBN 5-8459-0261-4 | ||
+ | |||
+ | [[Категория: Теория формальных языков]] | ||
+ | [[Категория: Автоматы и регулярные языки]] | ||
+ | [[Категория: Свойства конечных автоматов]] |
Текущая версия на 09:24, 14 марта 2018
Лемма о разрастании (лемма о накачке, англ. pumping lemma) — лемма, позволяющая во многих случаях проверить, является ли данный язык регулярным.
Содержание
Лемма о разрастании[править]
Лемма (о разрастании, о накачке): |
Пусть регулярный язык над алфавитом , тогда существует такое , что для любого слова длины не меньше найдутся слова , для которых верно: и . — |
Доказательство: |
Пусть — регулярный язык над алфавитом . Поскольку регулярный язык является автоматным, то найдётся автомат , допускающий язык . Пусть — размер автомата. Докажем, что удовлетворяет условию леммы.
|
Замечание. Условие леммы не является достаточным для регулярности языка. (См. пример)
Лемма о разрастании в общем виде[править]
Лемма (о разрастании, о накачке в общем виде): |
Если язык является регулярным, то существует число такое что для любого слова из языка , где может быть записано в форме ,
где слова , и такие, что , и принадлежит языку для любого целого числа . |
Доказательство: |
Исходя из формулировки леммы в общем виде, стандартная версия леммы, которая описана выше, является особым случаем, в котором строки Доказательство леммы в общем виде аналогично доказательству стандартной версии леммы, с тем отличием, что строки и пусты. и теперь могут быть как не пусты, так и пусты. |
Замечание. Поскольку лемма в общем виде накладывает более жесткие требования на язык, то она может быть использована для доказательства нерегулярности многих других языков, таких как
.Использование леммы для доказательства нерегулярности языков[править]
Для доказательства нерегулярности языка часто удобно использовать отрицание леммы о разрастании. Пусть
— язык над алфавитом . Если для любого натурального найдётся такое слово из данного языка, что его длина будет не меньше и при любом разбиении на три слова такие, что непустое и длина не больше , существует такое , что , то язык нерегулярный.Рассмотрим такой подход на примере языка правильных скобочных последовательностей. Для фиксированного
предъявляем слово . Пусть как-то разбили на . Так как , то , где . Для любого такого разбиения берём и получаем , что не является правильной скобочной последовательностью. Значит, язык правильных скобочных последовательностей нерегулярен.Пример нерегулярного языка, для которого выполняется лемма о разрастании[править]
Пример языка, удовлетворяющего стандартной версии леммы[править]
Рассмотрим следующий язык:
Докажем, что он нерегулярный. Для этого рассмотрим вспомогательный язык
и докажем его нерегулярность. Воспользуемся предложенным в предыдущем пункте подходом. Для фиксированного выберем слово . Заметим, что при любом разбиении на слово не пусто (по условию леммы) и содержит только символы и (согласно выбранному слову и условию из леммы ). Это означает, что при слово либо не содержит символа , либо количество символов меньше . В обоих случаях полученное слово не принадлежит языку. Значит язык нерегулярный.Предположим, что язык
регулярный. Заметим, что . В силу того, что пересечение регулярных языков регулярно, имеем в правой части равенства регулярный язык. При этом в левой части стоит язык, нерегулярность которого была доказана ранее. Значит наше предположение неверно, и язык нерегулярный.Докажем, что язык удовлетворяет лемме о разрастании. Выберем в лемме
. Это означает, что длина рассматриваемых слов не меньше (иными словами ). Для каждого случая значений выберем соответствующие слова и из леммы. Легко проверить, что в каждом из приведенных ниже случаев условие леммы выполняется:- . Слово имеет вид . Выберем .
- . Слово имеет вид . Выберем .
- . Слово имеет вид . Выберем .
- . Слово имеет вид . Выберем .
- . Слово имеет вид . Выберем .
Таким образом, язык
удовлетворяет второй части леммы и при этом является нерегулярным, что доказывает тот факт, что лемма о разрастании не является достаточным для регулярности языка.Пример языка, удовлетворяющего лемме в общем виде[править]
Рассмотрим другой пример.
из символов слова является символом
Докажем, что он нерегулярный. Предположим, что некоторая строка языка
имеет длину . Поскольку в алфавите всего четыре символа, то как минимум два символа из пяти в этой строке будут одинаковыми, и они разделены максимум тремя символами:- Если дубликаты разделены нулями или единицами, накачаем один из двух остальных символов в строке, которые не повлияют на подстроку, которая содержит дубликаты.
- Если дубликаты разделены двойками или тройками, накачаем символа, разделяющих их. Накачка также уменьшает или увеличивает результат во время создания подстроки размера , которая содержит продублированных символа.
Второе условие языка
обеспечивает, что — нерегулярный, то есть в нем бесконечное число строк, которые принадлежат , но не могут быть получены путям разрастания некоторой меньшей строки в .См. также[править]
Источники информации[править]
- Wikipedia — Pumping lemma for regular languages
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — М.:Издательский дом «Вильямс», 2002. — С. 144. — ISBN 5-8459-0261-4