Редактирование: Классические теоремы о предельном переходе под знаком интеграла Лебега

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 18: Строка 18:
 
<tex> |f_{n_k}(x)| \le \varphi(x) </tex>. Устремим <tex> k </tex> к бесконечности, тогда <tex> |f(x)| \le \varphi(x) </tex>.
 
<tex> |f_{n_k}(x)| \le \varphi(x) </tex>. Устремим <tex> k </tex> к бесконечности, тогда <tex> |f(x)| \le \varphi(x) </tex>.
  
По определению интеграла, <tex> \forall \varepsilon > 0</tex>, можно подобрать <tex> A_\varepsilon </tex> — хорошее для <tex> \varphi: \int\limits_{\overline {A_\varepsilon}} \varphi d \mu < \varepsilon </tex>.
+
<tex> \forall \varepsilon > 0</tex>, можно подобрать <tex> A_\varepsilon </tex> — хорошее для <tex> \varphi: \int\limits_{\overline {A_\varepsilon}} \varphi d \mu < \varepsilon </tex>.
 
   
 
   
 
<tex> \left| \int\limits_E f_n - \int\limits_E f \right| \le \int\limits_E |f_n - f| = \int\limits_{{A_\varepsilon}} |f_n - f| +  \int\limits_{\overline {A_\varepsilon}} |f_n - f| </tex>
 
<tex> \left| \int\limits_E f_n - \int\limits_E f \right| \le \int\limits_E |f_n - f| = \int\limits_{{A_\varepsilon}} |f_n - f| +  \int\limits_{\overline {A_\varepsilon}} |f_n - f| </tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: