Редактирование: Классические теоремы о предельном переходе под знаком интеграла Лебега

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 40: Строка 40:
 
Леви
 
Леви
 
|statement=
 
|statement=
Пусть на <tex> E </tex> задана последовательность измеримых функций, каждая из которых почти всюду неотрицательна и <tex> f_n(x) \le f_{n+1}(x) </tex>. <tex> f(x) = \lim\limits_{n \to \infty} f_n(x) </tex> — почти везде конечна на <tex> E </tex>. Тогда <tex> \lim\limits_n \int\limits_E f_n = \int\limits_E f </tex>.
+
Пусть на E задана последовательность измеримых функций, каждая из которых почти всюду неотрицательна и <tex> f_n(x) \le f_{n+1}(x) </tex>. <tex> f(x) = \lim\limits_{n \to \infty} f_n(x) </tex> — почти везде конечна на <tex> E </tex>. Тогда <tex> \lim\limits_n \int\limits_E f_n = \int\limits_E f </tex>.
 
|proof=
 
|proof=
 
В силу поточечной монотонности <tex> f_n </tex>, <tex> f </tex>, как их предел, определена по теореме Вейерштрасса, предел измеримых функций измерим, поэтому все интегралы имеют смысл, функция неотрицательна.  
 
В силу поточечной монотонности <tex> f_n </tex>, <tex> f </tex>, как их предел, определена по теореме Вейерштрасса, предел измеримых функций измерим, поэтому все интегралы имеют смысл, функция неотрицательна.  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: