Изменения

Перейти к: навигация, поиск

Метрические пространства

1371 байт добавлено, 19:34, 21 января 2016
опечатка
{{В разработке}}
 
{{Определение
|id=defms
|proof=
Рассмотрим <tex>f(t) = {t \over 1 + t}</tex>.
* <tex> f(t) </tex> возрастает при <tex> t \in (-1[0, \infty) </tex>, поэтому, если <tex> -1 0 \le t_1 < t_2 </tex>, < tex> f(t_1 ) < f(t_2 ) </tex>* <tex> \frac{f(t)}{t} = \frac{1}{1 + t}</tex> убывает при <tex>t \in [0, \infty)</tex>Покажем, что для <tex>f</tex> выполняется <tex> f(t_1 + t_2) \le f(t_1) < + f(t_2) </tex>. * <tex>f(t_1) + f(t_2) = t_1 \frac{1}{1 + t_1} + t_2 \frac{1}{1 + t_2} \ge</tex>(по убыванию <tex>\frac{1}{1 + t}</tex>)<tex>\ge t_1 \frac{1}{1 + t_1 + t_2} + t_2 \frac{1}{1 + t_1 + t_2} = \frac{t_1 + t_2}{1 + t_1 + t_2} = f(t_1 + t_2)</tex> выпукла вверх на том же промежутке. Так как <tex> |x - z| \le |x - y| + |y - z| </tex> по свойствам <tex> | \cdot | </tex> и <tex>f</tex> возрастает, то <tex> f(|x - z|) \le f(|x - y| + |y - z|)</tex>. Из свойств [[Модуль_непрерывности_функции | модуля непрерывности]] имеем Так как знаем, что <tex>f(t_1 + t_2) \le f(t_1) + f(t_2)</tex>, тогда получаем <tex>f(|x - y| + |y - z|) \le f(|x - y|) + f(|y - z|) </tex>, то есть получили <tex>f(|x - z|) \le f(|x - y|) + f(|y - z|)</tex>.
}}
|statement=Сходимость в метрике <tex> \mathbb{R}^{\infty} </tex> эквивалентна покоординатной.
|proof=
Рассматриваем <tex> f(xt) = \frac{xt}{1+xt} </tex>, как и в прошлом утверждении.
Пусть <tex> x^{(n)} = (x^{(n)}_1, \dots, x^{(n)}_k, \dots), x = (x_1, \dots, x_k, \dots) </tex>. Покажем, что <tex> x^{(n)} \to x \iff \forall k: x^{(n)}_k \to x_k </tex>.
'''Внутренностью (interior)''' множества <tex>A</tex> называется множество <tex>\mathrm{Int} A = \bigcup\limits_{G \subset A} G</tex>, где <tex> G </tex> — открытые множества.
'''Замыкание Замыканием (closure)''' множества <tex>A</tex> называется множество <tex>\mathrm{Cl} A = \bigcap\limits_{A \subset F } F</tex>, где <tex> F </tex> — замкнутые множества.
'''Границей (boundary, frontier)''' множества <tex>A</tex> называется множество <tex>\mathrm{Fr} A = \mathrm{Cl} A \setminus \mathrm{Int} A</tex>.
|id=defnbh
|definition=
Множество <tex>U</tex> называется '''окрестностью''' точки <tex> x </tex> в ТП, если существует открытое <tex>G</tex>: <tex>x \in G \subset U</tex>.
}}
Характеристика непрерывных отображений ТП: <tex>f</tex> непрерывно, если для любого <tex>G' \in \tau_2: f^{-1}(G') \in \tau_1</tex>, то есть прообраз любого открытого множества также открыт.<ref>В конспекте только в прямую сторону, но вообще, вроде, это критерий. Док-во есть в Колмогорове, элементы теории функции и функана, 6 издание, страница 107.</ref>
Для любого МП <tex>(X, \rho)</tex> можно ввести '''метрическую топологию''': выделим в <tex> X </tex> семейство открытых множеств <tex>\tau</tex> множества, являющимися объединениями любого (возможно, несчетного) числа открытых шаров. Покажем, что это семейство удовлетворяет аксиомам ТП:
# Очевидно, <tex>X = \bigcup\limits_{x \in X}\bigcup\limits_{i=1}^{\infty}U_i(x)</tex>.
# Очевидно.
# Докажем для пересечения двух множеств, дальше по индукции:
#: <tex>G_1 \bigcap G_2 = (\bigcup\limits_{\alpha} V') \bigcap (\bigcup\limits_{\beta} V'') = \bigcup\limits_{\alpha, \beta} (V' \bigcap V'')</tex>. (То, что так можно сделать, доказывается включением в обе стороны)
#: Рассмотрим <tex>V' \bigcap V''</tex>: <tex>\forall x \in V' \bigcap V'' \exists V(x) \subset V' \bigcap V''</tex> ([[Метрическое пространство#Открытые шары | раньше когда-то доказывали]]), тогда <tex>V' \bigcap V'' = \bigcup\limits_{x \in V' \cap V''} V(x)</tex>
В данном случае открытые множества были получены объединением открытых шаров — множеств более узкого класса. Это один из общих приемов превращения произвольного пространства в топологическое, открытые шары здесь — база топологии.
Обозначим <tex>B = \{ x \mid \rho(x, A) = 0 \}</tex>. Понятно, что если некоторая последовательность <tex>x_n \in B</tex> сходится к <tex>x</tex>, то <tex>\rho(x_n, A) = 0</tex>, и <tex>\rho(x, A) = 0</tex>, то есть, по определению <tex>B</tex>, <tex>x \in B</tex>. Значит, <tex>B = \mathrm{Cl} B</tex>, <tex>B</tex> замкнуто.
Если <tex>a \in A</tex>, то <tex>\rho(a, A) = 0</tex> и <tex>a \in B</tex>. Значит, <tex>A \subset B</tex>, а раз <tex>B</tex> замкнуто, то <tex>\mathrm{Cl} A \subset B</tex>.
Теперь покажем, что <tex>B \subset \mathrm{Cl} A </tex>, то есть <tex>B \subset \bigcap\limits_{A \subset F } F </tex>, или что для любого <tex>F: A \subset F</tex>, выполняется <tex>B \subset F</tex>.
Если в пространстве существует счетное всюду плотное множество, такое пространство называют '''сепарабельным'''.
<tex>A</tex> '''нигде не плотно''' в <tex>(X, \rho)</tex>, если <tex>\mathrm{Int} \mathrm{Cl} A = \varnothing</tex>. В смысле метрических пространств это значит, что в любом шаре есть шар, не содержащий точек <tex>A</tex>.
: Например, <tex>\mathbb{Z}</tex> нигде не плотно в <tex>\mathbb{R}</tex>.
}}
{{Утверждение
|statement=
Пусть <tex> A </tex> нигде не плотно в <tex> (X, \rho) </tex>. Тогда в любом шаре есть шар, не содержащий точек <tex>A</tex>.
|proof=
Пусть <tex> B = \mathrm{Cl} A </tex>, так как <tex> A </tex> нигде не плотно в <tex> X </tex>, то <tex> \mathrm{Int} B = \varnothing </tex>.
 
Это значит, что <tex>\bigcup\limits_{G \subset B} G = \varnothing </tex>, то есть, любое непустое открытое <tex> G </tex> не является подмножеством <tex> B </tex>.
 
Рассмотрим произвольный открытый шар <tex> V </tex>, <tex> V = (V \cap B) \cup (V \cap \overline B) </tex>. Из наших рассуждений следует, что <tex> V \cap \overline B </tex> непусто.
 
Но <tex> \overline B </tex> {{---}} открытое множество, <tex> \overline B = \bigcup\limits_{\alpha} V_{r_\alpha}(a_\alpha) </tex>, <tex> \exists V_1: V \cap V_1 \ne \varnothing </tex>.
 
Тогда можно просто выбрать <tex> V_r(a) \subset V \cap V_1 </tex>, он и будет искомым шаром без точек <tex> A </tex>.
}}
{{Определение
|id=defmscompact
|definition=
Замкнутое <tex>K \subset X</tex> называют '''компактом''', если из любой последовательности точек в <tex>K</tex> можно выделить сходящуюся подпоследовательность, предел которой также принадлежит <tex> K </tex>.
}}
Пример: <tex>R^{\infty}</tex> — полное.
|proof=
{{TODO|t=Это было упражнение. Решил: --[[Участник:Sementry|Мейнстер Д.]] 07:22, 7 января 2013 (GST). Проверьте и удалите эту плашку, если все хорошо.}}
 
Нужно установить равносильность сходимости <tex> \overline x^{(n)} \in R^{\infty} </tex> и ее сходимости в себе.
Так как <tex> \rho(x^{(n)}, x^{(m)}) \le \rho(x^{(n)}, x) + \rho(x^{(m)}, x) </tex>, и при <tex> n, m \to \infty </tex> каждое из слагаемых в правой части стремится к <tex> 0 </tex>, то <tex> x^{(n)} </tex> сходится в себе по определению.
<tex> \Leftarrow Longleftarrow </tex>:
Пусть <tex> x^{(n)} </tex> сходится в себе. Так же, как в предыдущих доказательствах, обозначим <tex>f(t) = \frac{t}{1+t}</tex>. Так как <tex>\forall k:\ f(|x^{(n)}_k - x^{(m)}_k|) \le 2^k \rho(x^{(n)}, x^{(m)}) \to 0 </tex>, а <tex>|x^{(n)}_k - x^{(m)}_k| = \frac{1}{1 - f(|x^{(n)}_k - x^{(m)}_k|)} - 1</tex>, то <tex> x^{(n)} </tex> сходится в себе также и покоординатно.
Анонимный участник

Навигация