Независимость определителя оператора от базиса. Теорема умножения определителей.
Лемма (*): |
[math] \mathcal{A}^{\wedge_p} {e_{i_1}} \land {e_{i_2}} \land ... \land {e_{i_p}} \stackrel{\mathrm{def}}{=} \mathcal{A}{e_{i_1}} \land \mathcal{A}{e_{i_2}} \land... \land \mathcal{A}{e_{i_p}} [/math] |
Лемма (**): |
Если [math] {x_1} \land {x_2} \land... \land {x_p} \in {\wedge_p} [/math], то [math] \mathcal{A}^{\wedge_p} {x_1} \land {x_2} \land ... \land {x_p} = \mathcal{A}{x_1} \land \mathcal{A}{x_2} \land... \land \mathcal{A}{x_p} [/math] |
Лемма (***): |
[math] \mathcal{A}^{\wedge_n} z = \det \mathcal{A} \cdot z [/math] |
Теорема умножения определителей
Теорема: |
Пусть [math]\mathcal{A}[/math], [math]\mathcal{B} \colon X \to X[/math] (автоморфизм). Тогда [math]\det (\mathcal{A} \cdot \mathcal{B}) = \det \mathcal{A} \cdot \det \mathcal{B}[/math] |
Доказательство: |
[math]\triangleright[/math] |
[math]\det (\mathcal{A} \cdot \mathcal{B}) {e_1} \land {e_2} \land... \land{e_n} = [/math] [math] \det \mathcal{A} \cdot \det \mathcal{B} \cdot {e_1} \land {e_2} \land ... \land {e_n} [/math] |
[math]\triangleleft[/math] |
Утверждение: |
Следствие 1: Пусть [math]\mathcal{A} \colon X \to X[/math] обратим, т.е. [math](\exists \mathcal{A}^{-1}) [/math] |
[math]\triangleright[/math] |
[math]\mathcal{A}^{-1} \cdot \mathcal{A} = \mathcal{I} \det (\mathcal{A}^{-1} \cdot \mathcal{A}) = [/math] |
[math]\triangleleft[/math] |
Утверждение: |
Следствие 2: Пусть [math]\tilde{A} = T^{-1}AT[/math] |