Изменения

Перейти к: навигация, поиск

Панциклический граф

697 байт добавлено, 16:41, 26 декабря 2017
добавлена лемма о четности n
|proof=
[[Файл:Circle 1.jpg|200px|left|thumb| <tex> v_k </tex> на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j -1}) </tex> и ребра (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+3}</tex>) выделены. Дуги и ребра, окрашенные в зеленый цвет, образуют цикл длины l]] [[Файл:Circle 2.jpg|200px|right|thumb| <tex> v_k </tex> на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> и ребра (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>) выделены. Дуги и ребра, окрашенные в зеленый цвет, образуют цикл длины l]]
Обозначим как <tex> C=v_1 v_2 v_3 \ldots v_n </tex> гамильтонов цикл в графе <tex> G </tex>. Для простоты расположим <tex> C </tex> на окружности (см. рисунки). Также подразумевается, что все индексы при вершинах берутся по модулю, то есть <tex> v_j = v_{((j - 1)\bmod n) + 1} </tex>.
Пусть граф не панциклический, тогда в неи нет цикла длины <tex> l </tex>, <tex> 3 \leqslant l \leqslant n-1 </tex> (по условию в графе существует гамильтонов цикл, длина которого равна <tex> n </tex>). Рассмотрим две соседние вершины <tex> v_j v_{j+1} </tex> и вместе с ними рассмотрим следующие пары:
Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j -1}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+3}</tex>) (см. рисунок слева)
Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>) (см. рисунок справа)
При добавлении таких пар ребер в графе появляется цикл длины <tex> l </tex> (выделены зеленым цветом на рисунках слева и справа). Действительно:
*Рассмотрим первый случай, когда <tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j -1}) </tex> и существуют ребра (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+3}</tex>). Длина цикла равна <tex> len((v_{k - l + 3}, v_{k - l + 4}, v_{k})) + 3 = k - (k - l + 3) + 3 = l - 3 + 3 = l </tex>.
*Рассмотрим второй случай, когда <tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> и существуют ребра (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>). Тогда длина цикла равна <tex> len((v_{k}, v_{k - 1}, v_{k - l + 1})) - 1 + 2 = k - (k - l + 1) - 1 + 2 = l - 1 - 1 + 2 = l </tex>.
Значит в <tex> G </tex> может входить максимум одно ребро из таких пар. Тогда можно утверждать, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>.
Докажем методом от противного{{Лемма|statement=Если для графа <tex> G </tex> выполнены условия из теоремы и в нем отсутствует цикл длины <tex> l </tex>, что <tex> 3 \leqslant l \leqslant n -1 </tex> {{---}} четно, то количество вершин в графе четное|proof= Доказательство будем вести методом от противного.
*Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{0}{n-1}{2} </tex>.
**Пусть это не так, тогда <tex> \forall i, 1 \leqslant i \leqslant n : deg(v_i) \geqslant \genfrac{}{}{}{0}{n-1}{2} + 1 = \genfrac{}{}{}{0}{n+1}{2} </tex>, значит <tex> \forall j, 1 \leqslant j \leqslant n : deg(v_j) + deg(v_{j+1}) \geqslant \genfrac{}{}{}{0}{n+1}{2} + \genfrac{}{}{}{0}{n+1}{2} = n + 1 </tex>, то есть мы получили противоречие с тем, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>.
*Без потери общности пусть <tex> v_x = v_n </tex>. Рассмотрим <tex> 2|E| = \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{\genfrac{}{}{}{}{n - 1}{2}} (deg(v_{2i-1}) + deg(v_{2i})) + deg(v_n) \leqslant \genfrac{}{}{}{0}{n(n-1)}{2} + </tex> <tex> \genfrac{}{}{}{0}{n-1}{2} < \genfrac{}{}{}{0}{n^2}{2} </tex>, то есть <tex> |E| < \genfrac{}{}{}{0}{n^2}{4} </tex>, но по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex> {{---}} получили противоречие.
Таким образом }}  По лемме <tex> n </tex> является четным, если в цикле отсутствует цикл длины <tex> l </tex>. Тогда верно, что <tex> 2|E| = \sum\limits_{i=1}^n deg(v_i) = \sum\limits_{i=1}^{\genfrac{}{}{}{}{n}{2}} (deg(v_{2i-1}) + deg(v_{2i})) \leqslant \genfrac{}{}{}{0}{n^2}{2} </tex>, а так как по условию <tex> |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex>, то <tex> |E| = \genfrac{}{}{}{0}{n^2}{4} </tex>. Данное равенство достигается, если верно, что:
[[Файл:Circle 3.jpg|800px|right|thumb|Слева направо изображены случаи 1-3. Красным выделены ребра, которые не могут быть в рассматриваемом графе, если в нем присутствуют ребра, выделенные зеленым]]
*<tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j - 1}) </tex>: <tex> (v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+3}) \notin E </tex> или <tex> (v_j, v_k) \notin E </tex> и <tex>(v_{j+1}, v_{k-l+3}) \in E </tex>
*<tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex>: <tex>(v_j, v_k) \in E </tex> и <tex>(v_{j+1}, v_{k-l+1}) \notin E </tex> или <tex>(v_j, v_k) \notin E </tex> и <tex>(v_{j+1}, v_{k-l+1}) \in E </tex>
Пусть <tex> G </tex> не <tex>K_{\genfrac{}{}{}{}{n}{2}, \genfrac{}{}{}{}{n}{2}}</tex>, тогда существует такое четное число <tex> k </tex>, что в графе <tex> G </tex> существует ребро <tex> (v_j, v_{j+k}) </tex>, то есть существует цикл нечетной длины. Докажем, что в таком случае существует ребро <tex> (v_j, v_{j+2}) \in E </tex>. Пусть это не так и минимальное четное <tex> k </tex>, что <tex> \exists (v_j, v_{j+k}) \in E </tex> больше двух, то есть <tex> k \geqslant 4 </tex>. Тогда существует три случая:
112
правок

Навигация