Редактирование: Представление производящей функций в виде непрерывных дробей

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 84: Строка 84:
 
<tex>Cat(s) = \cfrac{1}{1 - \cfrac{s}{1 - \cfrac{s}{1 - \cdots}}}.</tex>
 
<tex>Cat(s) = \cfrac{1}{1 - \cfrac{s}{1 - \cfrac{s}{1 - \cdots}}}.</tex>
  
Полученное разложение нужно понимать следующим образом. Если мы оборвем непрерывную дробь на <tex>n</tex>-м шаге (оставив вместо нее конечную непрерывную дробь, которая представляет собой рациональную функцию), то коэффициенты разложения полученной функции по степеням <tex>s</tex> будут совпадать с коэффициентами разложения функции <tex>Cat(s)</tex> вплоть до члена <tex>s^{n}</tex>.
+
Полученное разложение нужно понимать следующим образом. Если мы оборвем непрерывную дробь на <tex>n</tex>-м шаге (оставив вместо нее конечную непрерывную дробь, которая представляет собой рациональную функцию), то коэффициенты разложения полученной функции по степеням <tex>s</tex> будут совпадать с коэффициентами разложения функции <tex>Cat(s)</tex> вплоть до члена <tex>s^{2n}</tex>.
 
Заметим, что из-за наличия множителя <tex>s</tex> в числителе очередной дроби, присоединяемой на <tex>(n + 1)</tex>-м шаге, увеличение числа членов в непрерывной дроби не приводит к изменению первых <tex>n</tex> коэффициентов в ее разложении. Например,
 
Заметим, что из-за наличия множителя <tex>s</tex> в числителе очередной дроби, присоединяемой на <tex>(n + 1)</tex>-м шаге, увеличение числа членов в непрерывной дроби не приводит к изменению первых <tex>n</tex> коэффициентов в ее разложении. Например,
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)