Редактирование: Представление производящей функций в виде непрерывных дробей

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 101: Строка 101:
  
 
Изменим несколько треугольник Дика, поставив на стрелках числа. А именно, поставим на каждой стрелке номер того ряда, в котором она находится. Номер на стрелке
 
Изменим несколько треугольник Дика, поставив на стрелках числа. А именно, поставим на каждой стрелке номер того ряда, в котором она находится. Номер на стрелке
мы будем интерпретировать как ее кратность, то есть как число различных стрелок, проходящих в данном направлении. В результате одному пути в треугольнике Дика отвечает несколько «различных» путей в треугольнике с кратностями. Их число равно произведению кратностей всех ребер, входящих в данный путь. То есть значение элемента треугольника, которому раньше соответствовал путь в точку плоскости <tex>(m;n)</tex>, теперь равно следующему: <tex>c_{m,n} = (n+1)c_{m-1,n+1}+nc_{m-1,n-1}</tex>.
+
мы будем интерпретировать как ее кратность, то есть как число различных стрелок, проходящих в данном направлении. В результате одному пути в треугольнике Дика отвечает несколько «различных» путей в треугольнике с кратностями. Их число равно произведению кратностей всех ребер, входящих в данный путь. То есть значение элемента треугольника, которому раньше соответствовал путь в точку плоскости <tex>(m;n)</tex>: <tex>c_{m,n} = (n+1)c_{m-1,n+1}+nc_{m-1,n-1}</tex>.
  
 
[[Файл:R6.PNG]]
 
[[Файл:R6.PNG]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)