Пространство линейных операторов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 9: Строка 9:
 
{{Определение
 
{{Определение
 
|definition= Пусть <tex>\mathcal{A} \colon X \to Y;\quad \mathcal{A} \in X \times Y</tex> <br>
 
|definition= Пусть <tex>\mathcal{A} \colon X \to Y;\quad \mathcal{A} \in X \times Y</tex> <br>
 
 
Отображение <tex>\mathcal{D}</tex> называется произведением <tex>\mathcal{A}</tex> на число <tex>\lambda\ (\mathcal{D} = \mathcal{A} \cdot \lambda)</tex>,\ если <tex>\forall x \in X \colon \mathcal{D}x = \lambda \mathcal{A}x</tex>
 
Отображение <tex>\mathcal{D}</tex> называется произведением <tex>\mathcal{A}</tex> на число <tex>\lambda\ (\mathcal{D} = \mathcal{A} \cdot \lambda)</tex>,\ если <tex>\forall x \in X \colon \mathcal{D}x = \lambda \mathcal{A}x</tex>
 
}}
 
}}
Строка 46: Строка 45:
 
|statement = Пусть <tex>F_n^m = \{</tex> все матрицы <tex>A_{[m \times n]} = \begin{Vmatrix} \alpha^i_k \end{Vmatrix},\ \alpha^i_k \in F \}</tex><br>
 
|statement = Пусть <tex>F_n^m = \{</tex> все матрицы <tex>A_{[m \times n]} = \begin{Vmatrix} \alpha^i_k \end{Vmatrix},\ \alpha^i_k \in F \}</tex><br>
 
<tex>X \times Y</tex> изоморфно <tex>F_n^m</tex>
 
<tex>X \times Y</tex> изоморфно <tex>F_n^m</tex>
|proof=  
+
|proof= <tex> \mathcal{A} \longleftrightarrow A</tex> (единственным образом)
 +
 
 +
<tex> \{e_i\}_{i=0}^{n}</tex> {{---}} базис <tex>X</tex>
 +
<tex> \{h_k\}_{k=0}^{m}</tex> {{---}} базис <tex>Y</tex>
 +
 
 +
 
 
}}
 
}}
 
  
  

Версия 18:15, 14 июня 2013

Рассмотрим [math]X \times Y = \{[/math] все Л.О. [math]\mathcal{A} \colon X \to Y\}[/math]


Определение:
Пусть [math]\mathcal{A}, \mathcal{B} \colon X \to Y;\quad \mathcal{A}, \mathcal{B} \in X \times Y[/math]
Отображение [math]\mathcal{C}[/math] называется суммой [math]\mathcal{A}[/math] и [math]\mathcal{B}\ (\mathcal{C} = \mathcal{A} + \mathcal{B})[/math], если [math]\forall x \in X \colon \mathcal{C}x = \mathcal{A}x + \mathcal{B}x[/math]


Определение:
Пусть [math]\mathcal{A} \colon X \to Y;\quad \mathcal{A} \in X \times Y[/math]
Отображение [math]\mathcal{D}[/math] называется произведением [math]\mathcal{A}[/math] на число [math]\lambda\ (\mathcal{D} = \mathcal{A} \cdot \lambda)[/math],\ если [math]\forall x \in X \colon \mathcal{D}x = \lambda \mathcal{A}x[/math]


Лемма:
[math]\mathcal{C}[/math] и [math]\mathcal{D}[/math] — суть(являются) линейные операторы
Доказательство:
[math]\triangleright[/math]

Покажем, что:

  1. [math]\mathcal{C}(x_1 + x_2) = \mathcal{C}x_1 + \mathcal{C}x_2[/math]
  2. [math]\mathcal{C}(\lambda x) = \lambda \mathcal{C}x[/math]
Аналогично, покажем то же самое для [math]\mathcal{D}[/math]
[math]\triangleleft[/math]


Теорема:
[math]X \times Y[/math] — линейное пространство над полем [math]F[/math]
Доказательство:
[math]\triangleright[/math]
Проверим все 8 аксиом. Все они будут выполняться.
[math]\triangleleft[/math]


Определение:
[math]X \times Y[/math] называется прямым произведением пространств [math]X[/math] и [math]Y[/math]


Лемма:
Пусть [math]\mathcal{A} \leftrightarrow A[/math], [math]\mathcal{B} \leftrightarrow B[/math], [math]\mathcal{C} \leftrightarrow C[/math], [math]\mathcal{D} \leftrightarrow D[/math]

[math] \mathcal{C} = \mathcal{A} + \mathcal{C}[/math], [math] \mathcal{D} = \lambda \mathcal{A}[/math]

Тогда: [math]C = A + B;\quad D = \lambda A[/math]


Теорема:
Пусть [math]F_n^m = \{[/math] все матрицы [math]A_{[m \times n]} = \begin{Vmatrix} \alpha^i_k \end{Vmatrix},\ \alpha^i_k \in F \}[/math]
[math]X \times Y[/math] изоморфно [math]F_n^m[/math]
Доказательство:
[math]\triangleright[/math]

[math] \mathcal{A} \longleftrightarrow A[/math] (единственным образом)

[math] \{e_i\}_{i=0}^{n}[/math] — базис [math]X[/math]

[math] \{h_k\}_{k=0}^{m}[/math] — базис [math]Y[/math]
[math]\triangleleft[/math]


Ссылки

Источники

  • Анин конспект