Распознавание текста на изображении

Материал из Викиконспекты
Перейти к: навигация, поиск

Распознавание текста на изображениях ( оптическое распознавание символом (англ. optical character recognition, OCR)) - одно из направлений распознавания образов, задача которого заключается в переводе изображений рукописного, машинописного или печатного текста в текстовые данные, использующиеся для представления символов в компьютере (например, в текстовом редакторе).

Общая информация[править]

Распознавание текста на изображениях является важной задачей машинного обучения, так как это позволяет удобное взаимодействие с данными — редактирование, анализ, поиск слов или фраз и т.д..

В последние десятилетия, благодаря использованию современных достижений компьютерных технологий, были развиты новые методы обработки изображений и распознавания образов, благодаря чему стало возможным создание таких промышленных систем распознавания печатного текста, как например, FineReader, которые удовлетворяют основным требованиям систем автоматизации документооборота. Тем не менее, создание каждого нового приложения в данной области по-прежнему остается творческой задачей и требует дополнительных исследований в связи со специфическими требованиями по разрешению, быстродействию, надежности распознавания и объему памяти, которыми характеризуется каждая конкретная задача.

История[править]

Разработка OCR-систем берет начало из технологий, связанных с телеграфией и созданием считывающих устройств для слепых. В 1914 году Эммануэль Гольдберг разработал устройство, которое считывало символы и преобразовывало их в стандартный телеграфный код. Одновременно Эдмунд Фурнье д'Альбе разработал «Оптофон», ручной сканер, который при перемещении по напечатанной странице вырабатывал тональные сигналы, соответствующие определенным буквам или символам.

В 1974 году Рэй Курцвейл создал компанию «Kurzweil Computer Products, Inc», и начал работать над развитием первой системы оптического распознавания символов, способной распознать текст, напечатанный любым шрифтом. Курцвейл считал, что лучшее применение этой технологии — создание машины чтения для слепых, которая позволила бы слепым людям иметь компьютер, умеющий читать текст вслух. Данное устройство требовало изобретения сразу двух технологий — ПЗС планшетного сканера и синтезатора, преобразующего текст в речь.

Первой коммерчески успешной программой, распознающей кириллицу, была программа «AutoR» российской компании «ОКРУС». Алгоритм «AutoR» был компактный, быстрый и в полной мере «интеллектуальный», то есть по-настоящему шрифтонезависимый. Этот алгоритм разработали и испытали ещё в конце 60-х два молодых биофизика, выпускники МФТИ — Г. М. Зенкин и А. П. Петров. В настоящее время алгоритм Зенкина-Петрова применяется в нескольких прикладных системах, решающих задачу распознавания графических символов.

В 1993 году вышла технология распознавания текстов российской компании ABBYY. На её основе создан ряд корпоративных решений и программ для массовых пользователей. Технологии распознавания текстов ABBYY OCR лицензируют международные ИТ-компании, такие как Fujitsu, Panasonic, Xerox, Samsung[3], EMC и другие.

В 2000-х годах OCR-системы стали доступны в режиме онлайн в том числе и в мобильных приложения, например, перевод знаков на иностранный язык на смартфоне в режиме реального времени. Различные коммерческие и открытые OCR-системы доступны для большинства распространенных алфавитов, включая латинский, кириллический, арабский, иврит, индийский, деванагарский, тамильский, китайские, японские и корейские иероглифы.

Применение систем распознавания текстов[править]

Системы OCR применяются во многих областях. Вот некоторые из задач, которые решают системы распознавания текстов:

  • считывание данных с бланков и анкет
  • автоматическое распознавание номерного знака
  • распознавание паспортных данных
  • извлечение информации из визитных карточек в список контактов
  • более быстрое создание текстовых версий печатных документов, например, сканирование книг для проекта "Гутенберг".
  • вспомогательная технология для слепых и слабовидящих пользователей
  • оцифровывание документов с целью получить возможность удобной работы с текстом - редактирование, поиск слов или строк или анализ.

Типовые проблемы, связанные с системами OCR[править]

С задачей распознавания символов связаны следующие проблемы:

  • Разнообразие форм начертания символов

Документ может содержать несколько шрифтом сразу, что усложняет задачу распознавания текста. Некоторые символы похожи по начертанию (например, “G” и “6”, “S” и “5”, “U” и “V” и тд.) и в нестандартных шрифтах отличить их еще затруднительней

  • Искажение изображения, содержащего текст
    • Шумы при печати
    • Изображение плохого качества (засвет, размытость)
  • вариации размеров и масштаба символов.

Существенным является и влияние исходного масштаба печати, поэтому система оптического распознавания текста должна быть нечувствительной (устойчивой) по отношению к способу верстки, расстоянию между строками и другим параметрам печати.


Процесс распознавания текста[править]

Процесс распознавания текста

Система распознавания текста предполагает наличие на входе изображения с текстом (в формате данных графического файла). На выходе система должна выдать текст, выделенный из входных данных. Весь процесс распознавания текста состоит из нескольких задач.

Обработка изображения[править]

Перед началом распознавания текста изображение должно быть очищено от шума и приведено к виду, позволяющему эффективно выделять символы и распознавать их. Обычно у изображения повышают резкость, контрастность, выравнивают его и преобразовывают в в используемый системой формат (например, 8-битное изображение в градациях серого).

Сегментация[править]

Сегментация подразумевает собой разбиение изображения документа на отдельные области. Сначала система выделяет блоки текста. Это особенно важно при обработке документов с несколькими столбцами или таблиц.

Блок, строка, слово

Далее в каждом блоке выделяются базовые линии, которые позволяют разделить блок на строки, а в дальнейшем на символы. Это позволяет системе обрабатывать каждый символ по отдельности. Сначала производится предварительное разбиение изображения текста на отдельные изображения символов и после этого определяется зависимость между разными изображениями с оценкой расстояния между ними. На этапе распознавания результаты разбиения могут уточняться с целью дополнительного разбиения или объединения нескольких полученных изображений. Уточнения могут строиться на основе контекста: если часть символов хорошо распознаны, они могут указать на нераспознанный, либо факт уточнения может основываться на плохом распознании получившегося изображения символа.

Распознавание символы[править]

Для распознавания символа существуют 2 основных алгоритма.

Распознавание при помощи метрик[править]

Этой способ лучше всего работает с машинописным текстом, но при обработке новых шрифтов точность распознавания падает. Метрика по сути является признаком символа, поэтому иногда в контексте данного способа говорят о процессе выявления признаков. В качестве метрики используют расстояние Хэмминга, которое показывает, на сколько пикселей различаются изображения. Если признаки двух символов максимально похожи, то разность между их метриками (то есть расстояние между ними) стремится к нулю. Дальнейшая классификация символа происходит по методу ближайшего соседа

Однако одной метрики недостаточно для распознавания символа, так как некоторые символы очень похожи между собой (например, “j” и “i”, “Z” и “2”) и это может привести к ошибке. Чтобы избежать этого, есть несколько способов:

  • группировка символов

Например, некоторые символы (“O”, “H”, “I”) обладают суперсимметрией (полностью совпадают со своими отражениями и значимые пиксели распределены равномерно по всему изображению) и их можно выделить в отдельный класс. Это сокращает перебор метрик в несколько раз.

  • контекстное распознавание

В качестве помощи алгоритмам распознавания в систему включают словари. Словари предоставляют справки во многих случаях, но быстро отказывают, когда, например, имеют дело с именами собственными, которые не находятся в словаре.

Распознавание с применением нейронных сетей[править]

Сверточная нейронная сеть для распознавания символа

Нейронные сети – это структура связанных элементов, на которых заданы функции преобразования сигнала, а также коэффициенты, которые могут быть настроены на определенный характер работы.

Часть элементов структуры выделены как входные: на них поступают сигналы извне, таким образом, они описывают значения пикселя изображения. То есть, если имеется изображение 16х16, входов у сети должно быть 256. Другая часть – выходные: они формируют результирующие сигналы.

Сигнал, который проходит через нейронную сеть, преобразуется согласно формулам на элементах сети, и на выходе формируется ответ. Так как все нейроны поименованы значениями букв, следовательно, среагировавший нейрон и несет ответ распознавания.

Нейронная сеть может служить в системе распознавания текста в качестве классификатора. Этот классификатор сначала обучают, настраивая коэффициенты на элементах сети. При обучении сеть получает на вход изображения, анализирует все позиции черных пикселей и выравнивает коэффициенты, минимизируя ошибку. Таким образом, достигается лучший результат распознавания.

Пример нейронной сети

Пример нейронной сети для распознавания символов

На картинке в качестве примера схематически показана нейронная сеть, которая включает в себя 35 входов (каждый символ - матрица 7x5, соответственно, вектор, описывающий матрицу, состоит из 35 элементов) и 26 выходов (количество букв). Данная НС является двухслойной сетью. Функцией активации поставим логарифмическую сигмоидную функцию, которую удобно использовать, потому что выходные векторы содержат элементы со значениями в диапазоне от 0 до 1, что потом удобно перевести в булеву алгебру. На скрытый уровень выделим 10 нейронов (это число можно регулировать).

Пример на синтаксисе скриптового языка MATLAB

   S1 = 10; % количество нейронов на скрытом слое
   [S2,Q] = size(targets); % количество нейронов на втором слое (количество выходов сети)
   P = alphabet; % входная матрица, содержащая информацию о буквах
   % создаем новую сеть с использованием диалогового окна
   net = newff(minmax(P), % матрица минимальных и максимальных значений строк входной матрицы
           [S1 S2], % количество нейронов на слоях
           {’logsig’ ’logsig’}, % функция активации
           ’traingdx’ % алгоритм подстройки весов и смещений (обучающий алгоритм)
       );


Недостатки нейронных сетей

Нейронные сети с успехом могут применяться в системах распознавания текста, но существует большое число недостатков, которые препятствуют их широкому применению.

  • Затраты памяти - для построения сети, обеспечивающей распознавание каждого символа текста, необходимо построить достаточно большую сеть элементов, что приводит к большим затратам памяти.
  • Затраты ресурсов системы - помимо памяти, еще сильнее тратятся ресурсы системы в процессе распознавания, так как функции на элементах сети работают с числами с плавающей точкой.
  • Необходимость в обучение - для достижения более точного результата нейронную сеть необходимо обучать на все случаи, однако и это не гарантирует 100% результат.
  • Зависимость от конфигураций сети -так как работа нейронной сети по распознаванию текста во многом зависит от конфигурации сети и функций, заданных в элементах, требуется больше усилий для построения эффективно работающей сети.

См. также[править]

Источники информации[править]