Изменения

Перейти к: навигация, поиск

Распознавание текста на изображении

2898 байт убрано, 19:02, 19 января 2021
м
E2E-MLT: github
{{В разработке}} '''Распознавание текста на изображениях''' ( оптическое распознавание символом символов (англ. optical character recognition, OCR<ref>https://en.wikipedia.org/wiki/Optical_character_recognition</ref>)) {{--- }} одно из направлений распознавания образов, задача которого заключается в переводе изображений рукописного, машинописного машинного или печатного текста в текстовые данные, использующиеся для представления символов в компьютере (например, в текстовом редакторе).
== Общая информация ==
Распознавание текста на изображениях является важной задачей машинного обучения, так как это позволяет организовать удобное взаимодействие с данными : редактирование, анализ, поиск слов или фраз и т.д..
В последние десятилетия, благодаря использованию современных достижений компьютерных технологий, были развиты новые методы обработки изображений и распознавания образов, благодаря чему стало возможным создание таких промышленных систем распознавания печатного текста, как , например, FineReader<ref>https://www.abbyy.com/ru/finereader/</ref>, которые удовлетворяют основным требованиям систем автоматизации документооборота.  Тем не менее, создание каждого нового приложения в данной области по-прежнему остается творческой задачей и требует дополнительных исследований в связи со специфическими требованиями по разрешению, быстродействию, надежности распознавания и объему памяти, которыми характеризуется каждая конкретная задача.
== История ==
Разработка OCR-систем основана на технологиях, связанных с телеграфией и созданием считывающих устройств для слепых. В 1914 году Эммануэль Гольдберг разработал устройство, считывающее символы и преобразовывающее их в стандартный телеграфный код. Одновременно Эдмунд Фурнье д'Альбе разработал «Оптофон», ручной сканер, который, при перемещении по напечатанной странице, вырабатывал тональные сигналы, соответствующие определенным буквам или символам.
Разработка OCR-систем берет начало из технологий, связанных с телеграфией и созданием считывающих устройств для слепых. В 1914 году Эммануэль Гольдберг разработал устройство, которое считывало символы и преобразовывало их в стандартный телеграфный код. Одновременно Эдмунд Фурнье д'Альбе разработал "Оптофон", ручной сканер, который при перемещении по напечатанной странице вырабатывал тональные сигналы, соответствующие определенным буквам или символам. В конце 1920-х и начале 1930-х годов Эмануэль Гольдберг разработал то, что он назвал "Статистической машиной" для поиска микрофильмов в архивах с помощью оптической системы кодового распознавания. В 1931 году он получил патент на машину, который позже был приобретен компанией IBM. В 1974 году Рэй Курцвейл создал компанию «Kurzweil Computer Products, Inc», и начал работать над развитием первой системы оптического распознавания символов, способной распознать распознавать текст, напечатанный любым шрифтом. Курцвейл считал, что лучшее применение этой технологии {{---}} создание машины чтения для слепых, которая позволила бы слепым людям иметь компьютер, умеющий читать текст вслух. Данное устройство требовало изобретения сразу двух технологий {{---}} ПЗС (прибор с зарядовой связью<ref>https://ru.wikipedia.org/wiki/ПЗС</ref>) планшетного сканера и синтезатора, преобразующего текст в речь. Конечный продукт был представлен 13 января 1976 во время пресс-конференции, возглавляемой Курцвейлом и руководителями национальной федерации слепых. В 1978 году компания «Kurzweil Computer Products» начала продажи коммерческой версии компьютерной программы оптического распознавания символов. Компания «LexisNexis» была одним из первых покупателей и приобрела программу для загрузки юридических бумаг и новостных документов в онлайн базы данных. Два года спустя Курцвейл продал свою компанию корпорации «Xerox», которая была заинтересована в дальнейшей коммерциализации систем распознавания текста. «Kurzweil Computer Products» стала дочерней компанией «Xerox», известной как «Scansoft». Первой коммерчески успешной программой, распознающей кириллицу, была программа «AutoR» российской компании «ОКРУС». Программа начала распространяться в 1992 году, работала под управлением операционной системы DOS и обеспечивала приемлемое по скорости и качеству распознавание даже на персональных компьютерах IBM PC/XT с процессором Intel 8088 при тактовой частоте 4,77 МГц. В начале 90-х компания Hewlett-Packard поставляла свои сканеры на российский рынок в комплекте с программой «AutoR». Алгоритм «AutoR» был компактный, быстрый и в полной мере «интеллектуальный», то есть по-настоящему шрифтонезависимый. Этот алгоритм разработали и испытали ещё в конце 60-х два молодых биофизика, выпускники МФТИ — Г. М. Зенкин и А. П. Петров. Свой метод распознавания они опубликовали в журнале «Биофизика» в номере 12, вып. 3 за 1967 год. В настоящее время алгоритм Зенкина-Петрова применяется в нескольких прикладных системах, решающих задачу распознавания графических символов. На основе алгоритма компанией Paragon Software Group в 1996 была создана технология PenReader. Г.М Зенкин продолжил работу над технологией PenReader в компании Paragon Software Group[1]. Технология используется в одноимённом продукте компании[2].
В 1993 году вышла технология распознавания текстов Первой коммерчески успешной программой, распознающей кириллицу, стала программа «AutoR» российской компании ABBYY«ОКРУС». На её основе создан ряд корпоративных решений Алгоритм «AutoR» был компактный, быстрый и программ для массовых пользователейшрифтонезависимый. В частностиЭтот алгоритм разработали и испытали ещё в конце 60-х два молодых биофизика, программа для распознавания текстов ABBYY FineReader, приложения для распознавания текстовой информации с мобильных устройств, система потокового ввода документов выпускники МФТИ {{---}} Г. М. Зенкин и данных ABBYY FlexiCaptureА. П. Петров. Технологии распознавания текстов ABBYY OCR лицензируют международные ИТВ настоящее время алгоритм Зенкина-компанииПетрова применяется в нескольких прикладных системах, такие как Fujitsu, Panasonic, Xerox, Samsung[3], EMC и другиерешающих задачу распознавания графических символов.
В 1993 году вышла технология распознавания текстов российской компании ABBYY. На её основе создан ряд корпоративных решений и программ для массовых пользователей. Технологии распознавания текстов ABBYY OCR лицензируют международные ИТ-компании, такие как Fujitsu, Panasonic, Xerox, Samsung, EMC и другие.
В 2000-х годах производительность и компактность OCR-системы стали доступны в режиме позволила представить на рынок онлайн в том числе и в мобильных приложения, например, перевод знаков -сервисы по переводу текста с одного языка на иностранный язык на смартфоне в режиме реального временидругой. Сейчас на смартфонах доступны приложенияСо временем такие программы получили возможность обрабатывать изображения как печатного, которые позволяют извлекать текст с помощью камеры устройстватак и рукописного текста.
Различные коммерческие С развитием технологий производства мобильных устройств и открытые упрощения процесса разработки мобильных приложений, OCR-системы доступны для большинства распространенных алфавитов, включая латинский, кириллический, арабский, иврит, индийскийстали неотъемлемой частью разнообразных программ: от развлекательных до обучающих, деванагарский, тамильский, китайские, японские и корейские иероглифыот мобильных помощников до систем управления.
== Применение систем распознавания текстов ==
 
Системы OCR применяются во многих областях. Вот некоторые из задач, которые решают системы распознавания текстов:
* считывание Считывание данных с бланков и анкет.* автоматическое Автоматическое распознавание номерного знака.* распознавание Распознавание паспортных данных.* извлечение Извлечение информации из визитных карточек в список контактов.* более быстрое создание текстовых Создание цифровых версий печатных и рукописных документов, например, сканирование книг для проекта "Гутенберг"<ref>https://ru.wikipedia.org/wiki/Проект_«Гутенберг»</ref>.* вспомогательная технология Технология для слепых помощи слепым и слабовидящих пользователей* оцифровывание документов с целью получить возможность удобной работы с текстом - редактирование, поиск слов или строк или анализслабовидящим.
== Типовые проблемы, связанные с системами Наиболее распространенные задачи OCR ==
С задачей распознавания символов связаны следующие проблемы:
* Разнообразие форм начертания символовДокумент : документ может содержать несколько шрифтом шрифтов сразу, что усложняет задачу распознавания текста. Некоторые а символы похожи могут быть схожи по начертанию (например, “G” и “6”, “S” и “5”, “U” и “V” и тд.) и в нестандартных шрифтах отличить их еще затруднительней * Искажение изображения, содержащего текст:** Шумы при печати.** Изображение плохого качества Плохое качество изображения (засветзасвеченность, размытость).* вариации Вариации размеров , масштаба и масштаба положения символовна странице.Существенным является и влияние * Влияние исходного масштаба печати, поэтому : система оптического распознавания текста должна быть нечувствительной (устойчивой) по отношению к способу верстки, расстоянию между строками и другим параметрам печати. 
== Процесс распознавания текста ==
[[Файл:ПримерПроцесс_распознавания_текста.jpg|thumb|380px|Процесс распознавания текста]]
Система распознавания текста предполагает наличие на входе изображения с текстом (в формате данных графического файла). На выходе система должна выдать текст, выделенный из входных данных. Весь процесс распознавания текста состоит из нескольких задач.
=== Обработка изображения ===
Перед началом распознавания текста изображение должно быть очищено от шума и приведено к виду, позволяющему эффективно выделять символы и распознавать их. Обычно у изображения повышают резкость, контрастность, выравнивают его и преобразовывают в используемый системой формат (например, 8-битное изображение в градациях серого).
Перед началом распознавания текста изображение должно быть очищено от шума и приведено к виду, позволяющему эффективно выделять символы и распознавать их. Обычно у изображения повышают резкость, контрастность, выравнивают его и преобразовывают в в используемый системой формат (например, 8-битное изображение в градациях серого).  === Сегментация === Сегментация подразумевает собой разбиение изображения документа на отдельные области. Сначала система выделяет блоки текста. Это особенно важно при обработке документов с несколькими столбцами или таблиц. [[Файл:БлокСтрокаСлово.png|thumb|250px|Блок, строка, слово]] Далее в каждом блоке выделяются базовые линии, которые позволяют разделить блок на строки, а в дальнейшем на символы. Это позволяет системе обрабатывать каждый символ по отдельности. Сначала производится предварительное разбиение изображения текста на отдельные изображения Распознавание символов и после этого определяется зависимость между разными изображениями с оценкой расстояния между ними. На этапе распознавания результаты разбиения могут уточняться с целью дополнительного разбиения или объединения нескольких полученных изображений. Уточнения могут строиться на основе контекста: если часть символов хорошо распознаны, они могут указать на нераспознанный, либо факт уточнения может основываться на плохом распознании получившегося изображения символа.  === Распознавание символы ===''' ДОБАВИТЬ ОБЩИЕ СЛОВА '''Для распознавания символа существуют 2 основных алгоритма. <br> ==== Распознавание при помощи метрик ====<br>
== Алгоритмы распознавания символов ==
=== Распознавание при помощи метрик ===
Этой способ лучше всего работает с машинописным текстом, но при обработке новых шрифтов точность распознавания падает.
Метрика по сути является признаком символа, поэтому иногда в контексте данного способа говорят о процессе выявления признаков.
В качестве метрики используют [[Расстояние Хэмминга| расстояние Хэмминга]], которое показывает, на сколько пикселей различаются изображения.
Если признаки двух символов максимально похожи, то разность между их метриками (то есть расстояние между ними) стремится к нулю. Дальнейшая классификация символа происходит по [[Метрический классификатор и метод ближайших соседей|методу ближайшего соседа]] .
Однако , одной метрики недостаточно для распознавания символа, так как некоторые символы очень похожи между собой , (например, “j” и “i”, “Z” и “2”) и это что может привести к ошибке. Чтобы избежать Для избежания этого, есть несколько способовиспользуют следующие техники:* группировка <br><br>1) Группировка символов<br>Например, некоторые $\;$Некоторые символы (“O”, “H”, “I”) обладают суперсимметрией , (полностью совпадают со своими отражениями и , значимые пиксели распределены равномерно по всему изображению) и их можно выделить в отдельный класс. Это значительно сокращает перебор метрик в несколько раз.* контекстное <br><br>2) Контекстное распознавание<br>$\;$В качестве помощи алгоритмам распознавания в систему включают словари. Словари Они предоставляют справки во многих случаях, но быстро отказывают, когда, например, имеют дело с именами собственными, которые не находятся в словаре.
==== Распознавание с применением нейронных сетей ====
[[Файл:Нейронная_сеть_для_распознавания_символов.png|thumb|800px|Сверточная нейронная сеть для распознавания символа]]
[[Нейронные сети, перцептрон|Нейронные сети]] – это структура связанных элементов, на которых заданы функции преобразования сигнала, а также коэффициенты, которые могут быть настроены на определенный характер работы.
Часть элементов структуры выделены как входные: на них поступают сигналы извне, таким образом, они описывают значения пикселя изображения. То есть, если имеется изображение 16х16, входов у сети должно быть 256. Другая часть – выходные: , они формируют результирующие сигналы.  Сигнал, проходящий через нейронную сеть, преобразуется согласно формулам на элементах сети, на выходе формируется ответ. Так как все нейроны поименованы значениями букв, следовательно, среагировавший нейрон и несет ответ распознавания.
СигналНейронная сеть может быть использована в системе распознавания текста в качестве классификатора. При обучении, который проходит через нейронную сеть, преобразуется согласно формулам получает на элементах сетивход изображения, анализирует все позиции черных пикселей и на выходе формируется ответвыравнивает коэффициенты, минимизируя ошибку. Так как все нейроны поименованы значениями букв, следовательноТаким образом, среагировавший нейрон и несет ответ достигается лучший результат распознавания.
Нейронная сеть может служить в системе ====Пример нейронной сети====[[Файл:Пример нейронной сети для распознавания текста в качестве классификаторасимволов. Этот классификатор сначала обучают, настраивая коэффициенты на элементах jpg|thumb|800px|Пример нейронной сети. При обучении сеть получает на вход изображения, анализирует все позиции черных пикселей и выравнивает коэффициенты, минимизируя ошибку. Таким образом, достигается лучший результат для распознавания. символов]]
На картинке в качестве примера схематически показана двухслойная нейронная сеть, включающая в себя 35 входов (каждый символ {{---}} матрица 7x5, соответственно, вектор, описывающий матрицу, состоит из 35 элементов), 26 выходов (количество букв) и 10 нейронов скрытого слоя. В качестве [[Практики реализации нейронных сетей#Функции активации|функции активации]] в данной сети используется сигмоидная функция<ref>https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%B3%D0%BC%D0%BE%D0%B8%D0%B4%D0%B0</ref>, выход которой представлен в диапазоне от 0 до 1, что потом удобно перевести в булеву алгебру.
<br>
<br>
<br>
<br>
<br>
<br>
====Пример на синтаксисе скриптового языка MATLAB====
S1 = 10; ''% количество нейронов на скрытом слое''
[S2,Q] = size(targets); ''% количество нейронов на втором слое (количество выходов сети)''
P = alphabet; ''% входная матрица, содержащая информацию о буквах''
''% создаем новую сеть с использованием диалогового окна''
net = newff(minmax(P), ''% матрица минимальных и максимальных значений строк входной матрицы''
[S1 S2], ''% количество нейронов на слоях''
{’logsig’ ’logsig’}, ''% функция активации''
’traingdx’ ''% алгоритм подстройки весов и смещений (обучающий алгоритм)''
);
'''====Недостатки нейронных сетей''' ====Нейронные сети с успехом могут применяться в системах распознавания текста, однако обладают существенными недостатками, препятствующими их широкому применению:* Затраты памяти: необходимо построить достаточно большую сеть элементов, что приводит к большим затратам памяти. * Затраты ресурсов системы: в процессе распознавания используются большие объемы ресурсов системы, так как функции на элементах сети работают с числами с плавающей точкой. * Необходимость в обучении: для достижения более точного результата нейронную сеть необходимо обучать, однако и это не гарантирует идеальный результат.* Сложность построения: так как работа нейронной сети во многом зависит от ее конфигурации, требуется больше усилий для создания наиболее эффективной архитектуры.
Нейронные сети с успехом могут применяться в системах == Алгоритмы распознавания текста, но существует большое число недостатков, которые препятствуют их широкому применению. ===== E2E-MLT ==={{Определение* Затраты памяти |definition='''E2E- для построения сети, обеспечивающей распознавание каждого символа текста, необходимо построить достаточно большую сеть элементов, что приводит к большим затратам памятиMLT'''<ref>https://arxiv.org/abs/1801. * Затраты ресурсов системы 09919</ref> {{--- помимо памяти}} метод, еще сильнее тратятся ресурсы системы в процессе позволяющий решать задачи локализации и распознаваниятекста на изображениях, так как функции содержащих фрагменты на элементах разных языках. Основан на FCN-сети работают с числами с плавающей точкойобщими слоями для обеих задач. * Необходимость }}Реализация размещена в обучение Github репозитории<ref>https://github.com/MichalBusta/E2E- для достижения более точного результата нейронную сеть необходимо обучать на все случаи, однако и это не гарантирует 100% результатMLT</ref> одного из авторов проекта.* Зависимость от конфигураций сети <gallery mode="packed-так как работа нейронной сети по распознаванию текста во многом зависит от конфигурации сети и функций, заданных в элементах, требуется больше усилий для построения эффективно работающей сетиhover" widths=500px heights=250px>Image:e2emlt_work.jpg|250px|500px|''Результат работы E2E-MLT''</gallery>
== См. также ==
*[[Задача нахождения объектов на изображении]]
*[[Сверточные нейронные сети]]
*[[Глубокое обучение]]
== Источники информации ==
* [https://en.wikipedia.org/wiki/Optical_character_recognition Wikipedia {{---}} Optical character recognition ]
 
 
[[Категория: Компьютерное зрение]]
436
правок

Навигация