Изменения
Нет описания правки
Ноль не пересекается ни с одним другим числом.
{{Определение
}}
Иногда для использовании точной арифметики может понадобиться больше, чем <tex>p</tex> бит для хранения величин. В связи с этим вводится одно из базовых форм хранения чисел для такой арифметики.
}}
При вычислении результата может возникнуть ситуация, когда значение попадает в точности между двумя соседними <tex>p</tex>-битными значениями. Тогда требуется определить правило поведения в таком случае. Рассмотрим некоторые из них.
}}
Стоит отметить, что стандарт IEEE 754 использует округление до ближайшего четного по умолчанию.
'''ULP''' (англ. ''units in the last place'') {{---}} эффективная величина самого младшего (<tex>p</tex>-ого) бита.
}}
Так же полезной нотацией является <tex> err(a \circledast b) </tex>, которая обозначает ошибку округлении результата выполнения операции <tex>\circledast</tex>. Отметим, что если <tex>ulp</tex> всегда беззнаковая величина, то <tex>err</tex> может иметь знак. Для базовых операций (сложение, вычитание, умножение) <tex> a \circledast b = a \ast b + err(a \circledast b)</tex>, и точное округление гарантирует, что <tex> |err(a \circledast b)| \leqslant \frac{1}{2}ulp(a \circledast b)</tex>.
Разложение называется '''строго неперекрывающимся''', если если его компоненты попарно неперекрываются, ни одна компонента не смежна никаким двум другим, а также любая пара смежных компонент состоит из степеней двойки.
}}
Для разложения эта характеристика означает, что ноль в записи разложения должен появляться ''как минимум'' каждые $p + 1$ бит. Например, разложение, каждая компонента которого есть $p$-битное число, и максимальная величина которой равна $1111$, может быть не больше $1111.01111011110\dots$.