Изменения

Перейти к: навигация, поиск

Сортировка Хана

372 байта убрано, 15:49, 12 июня 2012
Нет описания правки
==Определения==
# Контейнер {{---}} объект, в которым мы храним хранятся наши данные. Например: 32-битные и 64-битные числа, массивы, вектора.
# Алгоритм сортирующий <tex>n</tex> целых чисел из множества <tex>\{0, 1, \ldots, m - 1\}</tex> называется консервативным, если длина контейнера (число бит в контейнере), является <tex>O(\log(m + n))</tex>. Если длина больше, то алгоритм неконсервативный.
# Если мы сортируем сортируются целые числа из множества {0, 1, ..., <tex>m</tex> - 1} с длиной контейнера <tex>k \log (m + n)</tex> с <tex>k</tex> <tex>\ge</tex> 1, тогда мы сортируем сортировка происходит с неконсервативным преимуществом <tex>k</tex>.
# Для множества <tex>S</tex> определим
}}
Взяв <tex>s = 2 \log n</tex> мы получим получаем хэш функцию <tex>h_{a}</tex> которая захэширует <tex>n</tex> чисел из <tex>U</tex> в таблицу размера <tex>O(n^2)</tex> без коллизий. Очевидно, что <tex>h_{a}(x)</tex> может быть посчитана для любого <tex>x</tex> за константное время. Если мы упакуем упаковать несколько чисел в один контейнер так, что они разделены несколькими битами нулей, мы спокойно сможем применить применяется <tex>h_{a}</tex> ко всему контейнеру, а в результате все хэш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш знчения вовлечены только (mod <tex>2^b</tex>) и (div <tex>2^{b - s}</tex>).
Такая хэш функция может быть найдена за <tex>O(n^3)</tex>.
В данной сортировке используется следующий алгоритм:
Предположим, что <tex>n</tex> чисел должны быть сортированы, и в каждом <tex>\log m</tex> бит. Мы рассматриваемРассматривается, что в каждом числе есть <tex>h</tex> сегментов, в каждом из которых <tex>\log (m/h)</tex> бит. Теперь мы применяем хэширование ко всем сегментам и получаем <tex>2h \log n</tex> бит хэшированных значений для каждого числа. После сортировки на хэшированных значениях для всех начальных чисел начальная задача по сортировке <tex>n</tex> чисел по <tex>m</tex> бит в каждом стала задачей по сортировке <tex>n</tex> чисел по <tex> \log (m/h)</tex> бит в каждом.
Так же, рассмотрим проблему последующего разделения. Пусть <tex>a_{1}</tex>, <tex>a_{2}</tex>, ..., <tex>a_{p}</tex> {{---}} <tex>p</tex> чисел и <tex>S</tex> {{---}} множество чисeл. Мы хотим Необходимо разделить <tex>S</tex> в <tex>p + 1</tex> наборов таких, что: <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < {<tex>a_{2}</tex>} < ... < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Т.к. мы используем используется signature sorting, до того как делать вышеописанное разделение, мы поделим необходимо поделить биты в <tex>a_{i}</tex> на <tex>h</tex> сегментов и возьмем некоторые из них. Мы так Так же поделим делим биты для каждого числа из <tex>S</tex> и оставим только один в каждом числе. По существу для каждого <tex>a_{i}</tex> мы возьмем берутся все <tex>h</tex> сегментов. Если соответствующие сегменты <tex>a_{i}</tex> и <tex>a_{j}</tex> совпадают, то нам понадобится только один. Сегменты, которые мы берем берутся для числа в <tex>S</tex>, {{---}} сегмент, который выделяется из <tex>a_{i}</tex>. Таким образом мы преобразуем начальную преобразуется начальная задачу о разделении <tex>n</tex> чисел в <tex>\log m</tex> бит в несколько задач на разделение с числами в <tex>\log (m/h)</tex> бит.
Пример:
<tex>a_{1}</tex> = 3, <tex>a_{2}</tex> = 5, <tex>a_{3}</tex> = 7, <tex>a_{4}</tex> = 10, S = {1, 4, 6, 8, 9, 13, 14}.
Мы разделим Делим числа на 2 сегмента. Для <tex>a_{1}</tex> получим верхний сегмент 0, нижний 3; <tex>a_{2}</tex> верхний 1, нижний 1; <tex>a_{3}</tex> верхний 1, нижний 3; <tex>a_{4}</tex> верхний 2, нижний 2. Для элементов из S получим: для 1: нижний 1 т.к. он выделяется из нижнего сегмента <tex>a_{1}</tex>; для 4 нижний 0; для 8 нижний 0; для 9 нижний 1; для 13 верхний 3; для 14 верхний 3. Теперь все верхние сегменты, нижние сегменты 1 и 3, нижние сегменты 4, 5, 6, 7, нижние сегменты 8, 9, 10 формируют 4 новые задачи на разделение.
==Сортировка на маленьких целых==
Выбор <tex>s</tex>-ого наибольшего числа среди <tex>n</tex> чисел упакованных в <tex>n/g</tex> контейнеров может быть сделана за <tex>O(n \log g/g)</tex> время и с использованием <tex>O(n/g)</tex> места. Конкретно медиана может быть так найдена.
|proof=
Так как мы можем возможно делать попарное сравнение <tex>g</tex> чисел в одном контейнере с <tex>g</tex> числами в другом и извлекать большие числа из одного контейнера и меньшие из другого за константное время, мы можем возможно упаковать медианы из первого, второго, ..., <tex>g</tex>-ого чисел из 5 контейнеров в один контейнер за константное время. Таким образом набор <tex>S</tex> из медиан теперь содержится в <tex>n/(5g)</tex> контейнерах. Рекурсивно находим медиану <tex>m</tex> в <tex>S</tex>. Используя <tex>m</tex> уберем хотя бы <tex>n/4</tex> чисел среди <tex>n</tex>. Затем упакуем оставшиеся из <tex>n/g</tex> контейнеров в <tex>3n/4g</tex> контейнеров и затем продолжим рекурсию.
}}
Если <tex>g</tex> целых чисел, в сумме использующие <tex>(\log n)/2</tex> бит, упакованы в один контейнер, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы за время <tex>O((n/g) \log g)</tex>, с использованием <tex>O(n/g)</tex> места.
|proof=
Так как используется только <tex>(\log n)/2</tex> бит в каждом контейнере для хранения <tex>g</tex> чисел, мы можем использовать используем bucket sorting чтобы отсортировать все контейнеры. представляя каждый как число, что занимает <tex>O(n/g)</tex> времени и места. Потому, что мы используем используется <tex>(\log n)/2</tex> бит на контейнер нам понадобится <tex>\sqrt{n}</tex> шаблонов для всех контейнеров. Затем поместим <tex>g < (\log n)/2</tex> контейнеров с одинаковым шаблоном в одну группу. Для каждого шаблона останется не более <tex>g - 1</tex> контейнеров которые не смогут образовать группу. Поэтому не более <tex>\sqrt{n}(g - 1)</tex> контейнеров не смогут сформировать группу. Для каждой группы мы помещаем <tex>i</tex>-е число во всех <tex>g</tex> контейнерах в один. Таким образом мы берем берутся <tex>g</tex> <tex>g</tex>-целых векторов и получаем <tex>g</tex> <tex>g</tex>-целых векторов где <tex>i</tex>-ый вектор содержит <tex>i</tex>-ое число из входящего вектора. Эта транспозиция может быть сделана за время <tex>O(g \log g)</tex>, с использованием <tex>O(g)</tex> места. Для всех групп это занимает время <tex>O((n/g) \log g)</tex>, с использованием <tex>O(n/g)</tex> места.
Для контейнеров вне групп (которых <tex>\sqrt{n}(g - 1)</tex> штук) мы просто разберем разбираем и соберем собираем заново контейнеры. На это потребуется не более <tex>O(n/g)</tex> места и времени. После всего этого мы используем bucket sorting вновь для сортировки <tex>n</tex> контейнеров. таким образом мы отсортируем все числаотсортированы.
}}
Заметим, что когда <tex>g = O( \log n)</tex> мы сортируем сортировка <tex>O(n)</tex> чисел в <tex>n/g</tex> контейнеров произойдет за время <tex>O((n/g) \log\log n)</tex>, с использованием O(n/g) места. Выгода очевидна.
Лемма пять.
(*): если число <tex>a</tex> упаковано как <tex>s</tex>-ое число в <tex>t</tex>-ом контейнере для чисел, тогда маркер для <tex>a</tex> упакован как <tex>s</tex>-ый маркер в <tex>t</tex>-ом контейнере для маркеров.
|proof=
Контейнеры для маркеров могут быть отсортированы с помощью bucket sort потому, что каждый контейнер использует <tex>( \log n)/2</tex> бит. Сортировка сгруппирует контейнеры для чисел как в четвертой лемме. Мы можем переместить Перемещаем каждую группу контейнеров для чисел.
}}
Заметим, что сортирующие алгоритмы в четвертой и пятой леммах нестабильные. Хотя на их основе можно построить стабильные алгоритмы используя известный метод добавления адресных битов к каждому входящему числу.
предположим, что каждый контейнер содержит <tex>\log m \log\log n > \log n</tex> бит, что <tex>g</tex> чисел, в каждом из которых <tex>(\log m)/g</tex> бит, упакованы в один контейнер, что каждое число имеет маркер, содержащий <tex>(\log n)/(2g)</tex> бит, и что <tex>g</tex> маркеров упакованы в один контейнер тем же образом что и числа, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы по своим маркерам за время <tex>O(n/g)</tex>, с использованием <tex>O(n/g)</tex> памяти.
|proof=
Заметим, что несмотря на то, что длина контейнера <tex>\log m \log\log n</tex> бит всего <tex>\log m</tex> бит используется для хранения упакованных чисел. Так же как в леммах четыре и пять мы сортируем контейнеры упакованных маркеров с помощью bucket sort. Для того, чтобы перемещать контейнеры чисел мы помещаем <tex>g \log\log n</tex> вместо <tex>g</tex> контейнеров чисел в одну группу. Для транспозиции чисел в группе , содержащей <tex>g \log\log n</tex> контейнеров мы сначала , упаковываем <tex>g \log\log n</tex> контейнеров в <tex>g</tex> контейнеров , упаковывая <tex>\log\log n</tex> контейнеров в один. Далее мы делаем транспозицию над <tex>g</tex> контейнерами. Таким образом перемещение занимает всего <tex>O(g \log\log n)</tex> времени для каждой группы и <tex>O(n/g)</tex> времени для всех чисел. После завершения транспозиции, мы далее распаковываем <tex>g</tex> контейнеров в <tex>g \log\log n</tex> контейнеров.
}}
Постановка задачи и решение некоторых проблем:
Рассмотрим проблему сортировки <tex>n</tex> целых чисел из множества {0, 1, ..., <tex>m</tex> - 1} в <tex>\sqrt{n}</tex> наборов как во второй лемме. Мы предполагаемПредполагая, что в каждом контейнере <tex>k \log\log n \log m</tex> бит и хранит число в <tex>\log m</tex> бит. Поэтому неконсервативное преимущество <tex>k \log \log n</tex>. Мы так Так же предполагаем, что <tex>\log m \ge \log n \log\log n</tex>. Иначе мы можем можно использовать radix sort для сортировки за время <tex>O(n \log\log n)</tex> и линейную память. Мы делим Делим <tex>\log m</tex> бит, используемых для представления каждого числа, в <tex>\log n</tex> блоков. Таким образом каждый блок содержит как минимум <tex>\log\log n</tex> бит. <tex>i</tex>-ый блок содержит с <tex>i \log m/ \log n</tex>-ого по <tex>((i + 1) \log m/ \log n - 1)</tex>-ый биты. Биты считаются с наименьшего бита начиная с нуля. Теперь у нас имеется <tex>2 \log n</tex>-уровневый алгоритм, который работает следующим образом:
На каждой стадии мы работаем с одним блоком бит. Назовем эти блоки маленькими числами (далее м.ч.) потому, что каждое м.ч. теперь содержит только <tex>\log m/ \log n</tex> бит. Каждое число представлено и соотносится с м.ч., над которым мы работаем в данный момент. Положим, что нулевая стадия работает с самыми большим блоком (блок номер <tex>\log n - 1</tex>). Предполагаем, что биты этих м.ч. упакованы в <tex>n/ \log n</tex> контейнеров с <tex>\log n</tex> м.ч. упакованных в один контейнер. Мы пренебрегаем Пренебрегая временем, потраченным на на эту упаковку, считая считается, что она бесплатна. По третьей лемме мы можем найти находим медиану этих <tex>n</tex> м.ч. за время и память <tex>O(n/ \log n)</tex>. Пусть <tex>a</tex> это найденная медиана. Тогда <tex>n</tex> м.ч. могут быть разделены на не более чем три группы: <tex>S_{1}</tex>, <tex>S_{2}</tex> и <tex>S_{3}</tex>. <tex>S_{1}</tex> содержит м.ч. которые меньше <tex>a</tex>, <tex>S_{2}</tex> содержит м.ч. равные <tex>a</tex>, <tex>S_{3}</tex> содержит м.ч. большие <tex>a</tex>. Так же мощность <tex>S_{1}</tex> и <tex>S_{3} </tex>\le <tex>n/2</tex>. Мощность <tex>S_{2}</tex> может быть любой. Пусть <tex>S'_{2}</tex> это набор чисел, у которых наибольший блок находится в <tex>S_{2}</tex>. Тогда мы можем убрать убрать убираем <tex>\log m/ \log n</tex> бит (наибольший блок) из каждого числа из <tex>S'_{2}</tex> из дальнейшего рассмотрения. Таким образом после первой стадии каждое число находится в наборе размера не большего половины размера начального набора или один из блоков в числе убран из дальнейшего рассмотрения. Так как в каждом числе только <tex>\log n</tex> блоков, для каждого числа потребуется не более <tex>\log n</tex> стадий чтобы поместить его в набор половинного размера. За <tex>2 \log n</tex> стадий все числа будут отсортированы. Так как на каждой стадии мы работаем с <tex>n/ \log n</tex> контейнерами, то игнорируя время, необходимое на упаковку м.ч. в контейнеры и помещение м.ч. в нужный набор, мы затратим затрачивается <tex>O(n)</tex> времени из-за <tex>2 \log n</tex> стадий.
Сложная часть алгоритма заключается в том, как поместить маленькие числа в набор, которому принадлежит соответствующее число, после предыдущих операций деления набора в нашем алгоритме. Предположим, что <tex>n</tex> чисел уже поделены в <tex>e</tex> наборов. Мы можем использовать Используем <tex>\log e</tex> битов чтобы сделать марки для каждого набора. Теперь хотелось бы использовать лемму шесть. Полный размер маркера для каждого контейнера должен быть <tex>\log n/2</tex>, и маркер использует <tex>\log e</tex> бит, количество маркеров <tex>g</tex> в каждом контейнере должно быть не более <tex>\log n/(2\log e)</tex>. В дальнейшем т.к. <tex>g = \log n/(2 \log e)</tex> м.ч. должны влезать в контейнер. Каждый контейнер содержит <tex>k \log\log n \log n</tex> блоков, каждое м.ч. может содержать <tex>O(k \log n/g) = O(k \log e)</tex> блоков. Заметим, что мы используем неконсервативное преимущество в <tex>\log\log n</tex> для использования леммы шесть. Поэтому мы предполагаем предполагается, что <tex>\log n/(2 \log e)</tex> м.ч. в каждом из которых <tex>k \log e</tex> блоков битов числа упакованный в один контейнер. Для каждого м.ч. мы используем используется маркер из <tex>\log e</tex> бит, который показывает к какому набору он принадлежит. Предполагаем, что маркеры так же упакованы в контейнеры как и м.ч. Так как каждый контейнер для маркеров содержит <tex>\log n/(2 \log e)</tex> маркеров, то для каждого контейнера требуется <tex>(\log n)/2</tex> бит. Таким образом лемма шесть может быть применена для помещения м.ч. в наборы, которым они принадлежат. Так как используется <tex>O((n \log e)/ \log n)</tex> контейнеров то время необходимое для помещения м.ч. в их наборы потребуется <tex>O((n \log e)/ \log n)</tex> времени.
Стоит отметить, что процесс помещения нестабилен, т.к. основан на алгоритме из леммы шесть.
При таком помещении мы сразу сталкиваемся со следующей возникает следующая проблемой.
Рассмотрим число <tex>a</tex>, которое является <tex>i</tex>-ым в наборе <tex>S</tex>. Рассмотрим блок <tex>a</tex> (назовем его <tex>a'</tex>), который является <tex>i</tex>-ым м.ч. в <tex>S</tex>. Когда мы используем используется вышеописанный метод перемещения нескольких следующих блоков <tex>a</tex> (назовем это <tex>a''</tex>) в <tex>S</tex>, <tex>a''</tex> просто перемещен на позицию в наборе <tex>S</tex>, но не обязательно на позицию <tex>i</tex> (где расположен <tex>a'</tex>). Если значение блока <tex>a'</tex> одинаково для всех чисел в <tex>S</tex>, то это не создаст проблемы потому, что блок одинаков вне зависимости от того в какое место в <tex>S</tex> помещен <tex>a''</tex>. Иначе у нас возникает проблема дальнейшей сортировки. Поэтому мы поступаем следующим образом: На каждой стадии числа в одном наборе работают на общем блоке, который назовем "текущий блок набора". Блоки, которые предшествуют текущему блоку содержат важные биты и идентичны для всех чисел в наборе. Когда мы помещаем больше бит в набор мы помещаем , помещаются последующие блоки вместе с текущим блоком в набор. Так вот, в вышеописанном процессе помещения мы предполагаемпредполагается, что самый значимый блок среди <tex>k \log e</tex> блоков это текущий блок. Таким образом после того , как мы поместили помещены эти <tex>k \log e</tex> блоков в набор мы удаляем , удаляется изначальный текущий блок, потому , что мы знаемизвестно, что эти <tex>k \log e</tex> блоков перемещены в правильный набор и нам не важно где находился начальный текущий блок. Тот текущий блок находится в перемещенных <tex>k \log e</tex> блоках.
Стоит отметить, что после нескольких уровней деления размер наборов станет маленьким. Леммы четыре, пять и шесть расчитанны на не очень маленькие наборы. Но поскольку мы сортируем сортируется набор из <tex>n</tex> элементов в наборы размера <tex>\sqrt{n}</tex>, то проблем не должно быть.
Собственно алгоритм:
==Собственно сортировка с использованием O(nloglogn) времени и памяти==
Для сортировки <tex>n</tex> целых чисел в диапазоне от {<tex>0, 1, ..., m - 1</tex>} мы предполагаемпредполагается, что используем контейнер длины <tex>O(\log (m + n))</tex> в нашем консервативном алгоритме. Мы Далее всегда считаем считается, что все числа упакованы в контейнеры одинаковой длины.
Берем <tex>1/e = 5</tex> для экспоненциального поискового дереве Андерссона. Поэтому у корня будет <tex>n^{1/5}</tex> детей и каждое ЭП-дерево в каждом ребенке будет иметь <tex>n^{4/5}</tex> листьев. В отличии от оригинального дерева, мы будем вставлять вставляется не один элемент за раз , а <tex>d^2</tex>, где <tex>d</tex> {{---}} количество детей узла дерева, где числа должны спуститься вниз.Но мы не будем сразу опускать донизу все <tex>d^2</tex> чисел. Мы будем Алгоритм полностью опускать опускает все <tex>d^2</tex> чисел на один уровень. В корне мы опустим опускаются <tex>n^{2/5}</tex> чисел на следующий уровень. После того, как мы опустили опустились все числа на следующий уровень мы и они успешно разделили числа разделились на <tex>t_{1} = n^{1/5}</tex> наборов <tex>S_{1}, S_{2}, ..., S_{t_{1}}</tex>, в каждом из которых <tex>n^{4/5}</tex> чисел и <tex>S_{i} < S_{j}, i < j</tex>. Затем мы берем , берутся <tex>n^{(4/5)(2/5)}</tex> чисел из <tex>S_{i}</tex> и за раз и опускаем их опускаются на следующий уровень ЭП-дерева. Повторяем этоЭто повторяется, пока все числа не опустятся на следующий уровень. На этом шаге мы разделили числа разделены на <tex>t_{2} = n^{1/5}n^{4/25} = n^{9/25}</tex> наборов <tex>T_{1}, T_{2}, ..., T_{t_{2}}</tex> в каждом из которых <tex>n^{16/25}</tex> чисел, аналогичным наборам <tex>S_{i}</tex>. Теперь мы можем числа опускаются дальше опустить числа в нашем ЭП-дереве.
Нетрудно заметить, что ребалансирока занимает <tex>O(n \log\log n)</tex> времени с <tex>O(n)</tex> временем на уровень. Аналогично стандартному ЭП-дереву Андерссона.
Нам следует нумеровать уровни ЭП-дерева с корня, начиная с нуля. Рассмотрим спуск вниз на уровне <tex>s</tex>. Мы имеем Имеется <tex>t = n^{1 - (4/5)^s}</tex> наборов по <tex>n^{(4/5)^s}</tex> чисел в каждом. Так как каждый узел на данном уровне имеет <tex>p = n^{(1/5)(4/5)^s}</tex> детей, то на <tex>s + 1</tex> уровень мы опустим опускаются <tex>q = n^{(2/5)(4/5)^s}</tex> чисел для каждого набора или всего <tex>qt \ge n^{2/5}</tex> чисел для всех наборов за один раз.
Спуск вниз можно рассматривать как сортировку <tex>q</tex> чисел в каждом наборе вместе с <tex>p</tex> числами <tex>a_{1}, a_{2}, ..., a_{p}</tex> из ЭП-дерева, так, что эти <tex>q</tex> чисел разделены в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, ..., S_{p}</tex> таких, что <tex>S_{0} < </tex>{<tex>a_{1}</tex>} < ... < {<tex>a_{p}</tex>}<tex> < S_{p}</tex>.
Так как нам не надо полностью сортировать <tex>q</tex> чисел и <tex>q = p^2</tex>, то есть возможность использовать лемму 2 для сортировки. Для этого нам надо необходимо неконсервативное преимущество , которое мы получим получается ниже. Для этого используем линейную технику используется линейная техника многократного деления (multi-dividing technique) , чтобы добиться этого.
Для этого воспользуемся signature sorting. Адаптируем этот алгоритм для нас. Предположим у нас есть набор <tex>T</tex> из <tex>p</tex> чисел, которые уже отсортированы как <tex>a_{1}, a_{2}, ..., a_{p}</tex>, и мы хотим хотется использовать числа в <tex>T</tex> для разделения <tex>S</tex> из <tex>q</tex> чисел <tex>b_{1}, b_{2}, ..., b_{q}</tex> в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, ..., S_{p}</tex> что <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < ... < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Назовем это разделением <tex>q</tex> чисел <tex>p</tex> числами. Пусть <tex>h = \log n/(c \log p)</tex> для константы <tex>c > 1</tex>. <tex>h/ \log\log n \log p</tex> битные числа могут быть хранены в одном контейнере, так что одно слово хранит <tex>(\log n)/(c \log\log n)</tex> бит. Сначала рассматриваем биты в каждом <tex>a_{i}</tex> и каждом <tex>b_{i}</tex> как сегменты одинаковой длины <tex>h/ \log\log n</tex>. Рассматриваем сегменты как числа. Чтобы получить неконсервативное преимущество для сортировки мы хэштруем , хэшируются числа в этих контейнерах (<tex>a_{i}</tex>-ом и <tex>b_{i}</tex>-ом) , чтобы получить <tex>h/ \log\log n</tex> хэшированных значений в одном контейнере. Чтобы получить значения сразу, при вычислении хэш значений сегменты не влияют друг на друга, мы можем можно даже отделить четные и нечетные сегменты в два контейнера. Не умаляя общности считаем, что хэш значения считаются за константное время. Затем, посчитав значения мы объединяем , два контейнера объединяются в один. Пусть <tex>a'_{i}</tex> хэш контейнер для <tex>a_{i}</tex>, аналогично <tex>b'_{i}</tex>. В сумме хэш значения имеют <tex>(2 \log n)/(c \log\log n)</tex> бит. Хотя эти значения разделены на сегменты по <tex>h/ \log\log n</tex> бит в каждом контейнере. Между сегментами получаются пустоты, которые мы забиваем забиваются нулями. Сначала упаковываем упаковываются все сегменты в <tex>(2 \log n)/(c \log\log n)</tex> бит. Потом рассмотрим рассматриваются каждый хэш контейнер как число и отсортируем сортируются эти хэш слова контейнеры за линейное время (сортировка рассмотрена чуть позже). После этой сортировки биты в <tex>a_{i}</tex> и <tex>b_{i}</tex> разрезаны на <tex>\log\log n/h</tex>. Таким образом мы получили получилось дополнительное мультипликативное преимущество в <tex>h/ \log\log n</tex> (additional multiplicative advantage).
После того, как мы повторили повторится вышеописанный процесс <tex>g</tex> раз мы получили , получится неконсервативное преимущество в <tex>(h/ \log\log n)^g</tex> раз, в то время , как мы потратили потрачено только <tex>O(gqt)</tex> времени, так как каждое многократное деление делятся за линейное время <tex>O(qt)</tex>.
Хэш функция, которую мы используемкоторая используется, находится следующим образом. Мы будем хэшировать Будут хэшироватся сегменты, которые <tex>\log\log n/h</tex>-ые, <tex>(\log\log n/h)^2</tex>-ые, ... от всего числа. Для сегментов вида <tex>(\log\log n/h)^t</tex>, получаем нарезанием всех <tex>p</tex> чисел на <tex>(\log\log n/h)^t</tex> сегментов. Рассматривая каждый сегмент как число мы получаем , получится <tex>p(\log\log n/h)^t</tex> чисел. Затем получаем одну хэш функцию для этих чисел. Так как <tex>t < \log n</tex> то мы получим , получится не более <tex>\log n</tex> хэш функций.
Рассмотрим сортировку за линейное время о которой было упомянуто ранее. ПредполагаемПредполагается, что мы упаковали хэшированные значения для каждого контейнера упаковались в <tex>(2 \log n)/(c \log\log n)</tex> бит. У нас есть Есть <tex>t</tex> наборов в каждом из которых <tex>q + p</tex> хэшированных контейнеров по <tex>(2 \log n)/(c \log\log n)</tex> бит в каждом. Эти числа должны быть отсортированы в каждом наборе. Мы комбинируем Комбинируя все хэш контейнеры в один pool и , сортируем следующим образом.
Procedure linear-Time-Sort
Входные данные: <tex>r > = n^{2/5}</tex> чисел <tex>d_{i}</tex>, <tex>d_{i}</tex>.value значение числа <tex>d_{i}</tex> в котором <tex>(2 \log n)/(c \log\log n)</tex> бит, <tex>d_{i}.set</tex> набор, в котором находится <tex>d_{i}</tex>, следует отметить что всего <tex>t</tex> наборов.
1) # Сортировать все <tex>d_{i}</tex> по <tex>d_{i}</tex>.value используя bucket sort. Пусть все сортированные числа в A[1..r]. Этот шаг занимает линейное время так как сортируется не менее <tex>n^{2/5}</tex> чисел.
2) # Поместить все A[j] в A[j].set
Таким образом мы заполнили заполняются все наборы за линейное время.
Как уже говорилось ранее после <tex>g</tex> сокращений бит мы получили получаем неконсервативное преимущество в <tex>(h/ \log\log n)^g</tex>. Мы не волнуемся об этих сокращениях до конца потому, что после получения неконсервативного преимущества мы можем переключиться на лемму два для завершения разделения <tex>q</tex> чисел с помощью <tex>p</tex> чисел на наборы. Заметим, что по природе битового сокращения, начальная задача разделения для каждого набора перешла в <tex>w</tex> подзадачи разделения на <tex>w</tex> поднаборы для какого-то числа <tex>w</tex>.
Теперь для каждого набора мы собираем собираются все его поднаборы в подзадачах в один набор. Затем используя лемму два делаем , делается разделение. Так как мы имеем получено неконсервативное преимущество в <tex>(h/ \log\log n)^g</tex> и мы работаем работа происходит на уровнях не ниже чем <tex>2 \log\log\log n</tex>, то алгоритм занимает <tex>O(qt \log\log n/(g(\log h - \log\log\log n) - \log\log\log n)) = O(\log\log n)</tex> времени.
Мы разделили В итоге разделились <tex>q</tex> чисел <tex>p</tex> числами в каждый набор. То есть мы получили , получилось, что <tex>S_{0}</tex> < {<tex>e_{1}</tex>} < <tex>S_{1}</tex> < ... < {<tex>e_{p}</tex>} < <tex>S_{p}</tex>, где <tex>e_{i}</tex> это сегмент <tex>a_{i}</tex> полученный с помощью битового сокращения. Мы получили такое Такое разделение получилось комбинированием всех поднаборов в подзадачах. Предположим Предполагаем, что числа хранятся в массиве <tex>B</tex> так, что числа в <tex>S_{i}</tex> предшествуют числам в <tex>S_{j}</tex> если <tex>i < j</tex> и <tex>e_{i}</tex> хранится после <tex>S_{i - 1}</tex> но до <tex>S_{i}</tex>. Пусть <tex>B[i]</tex> в поднаборе <tex>B[i].subset</tex>. Чтобы позволить разделению выполнится для каждого поднабора мы делаем делается следующее.
Помещаем все <tex>B[j]</tex> в <tex>B[j].subset</tex>
На это потребуется линейное время и место.
Теперь рассмотрим проблему упаковки, которую решим которая решается следующим образом. Будем считать Считается, что число бит в контейнере <tex>\log m \ge \log\log\log n</tex>, потому, что в противном случае можно использовать radix sort для сортировки чисел. У контейнера есть <tex>h/ \log\log n</tex> хэшированных значений (сегментов) в себе на уровне <tex>\log h</tex> в ЭП-дереве. Полное число хэшированных бит в контейнере <tex>(2 \log n)(c \log\log n)</tex> бит. Хотя хэшированны биты в контейнере выглядят как <tex>0^{i}t_{1}0^{i}t_{2}...t_{h/ \log\log n}</tex>, где <tex>t_{k}</tex>-ые это хэшированные биты, а нули это просто нули. Сначала упаковываем <tex>\log\log n</tex> контейнеров в один и получаем <tex>w_{1} = 0^{j}t_{1, 1}t_{2, 1}...t_{\log\log n, 1}0^{j}t_{1, 2}...t_{\log\log n, h/ \log\log n}</tex> где <tex>t_{i, k}</tex>: <tex>k = 1, 2, ..., h/ \log\log n</tex> из <tex>i</tex>-ого контейнера. мы ипользуем Ипользуем <tex>O(\log\log n)</tex> шагов, чтобы упаковать <tex>w_{1}</tex> в <tex>w_{2} = 0^{jh/ \log\log n}t_{1, 1}t_{2, 1} ... t_{\log\log n, 1}t_{1, 2}t_{2, 2} ... t_{1, h/ \log\log n}t_{2, h/ \log\log n} ... t_{\log\log n, h/ \log\log n}</tex>. Теперь упакованные хэш биты занимают <tex>2 \log n/c</tex> бит. Мы используем Используем <tex>O(\log\log n)</tex> времени чтобы распаковать <tex>w_{2}</tex> в <tex>\log\log n</tex> контейнеров <tex>w_{3, k} = 0^{jh/ \log\log n}0^{r}t_{k, 1}O^{r}t_{k, 2} ... t_{k, h/ \log\log n} k = 1, 2, ..., \log\log n</tex>. Затем используя <tex>O(\log\log n)</tex> времени упаковываем эти <tex>\log\log n</tex> контейнеров в один <tex>w_{4} = 0^{r}t_{1, 1}0^{r}t_{1, 2} ... t_{1, h/ \log\log n}0^{r}t_{2, 1} ... t_{\log\log n, h/ \log\log n}</tex>. Затем используя <tex>O(\log\log n)</tex> шагов упаковать <tex>w_{4}</tex> в <tex>w_{5} = 0^{s}t_{1, 1}t_{1, 2} ... t_{1, h/ \log\log n}t_{2, 1}t_{2, 2} ... t_{\log\log n, h/ \log\log n}</tex>. В итоге мы используем <tex>O(\log\log n)</tex> времени для упаковки <tex>\log\log n</tex> контейнеров. Считаем что время потраченное на одно слово {{---}} константа.
==Литераура==
81
правка

Навигация