1679
правок
Изменения
fix
<tex> \Leftarrow </tex>:
Пусть <tex> x^{(n)} </tex> сходится в себе. Так же, как в предыдущих доказательствах, обозначим <tex>f(t) = \frac{t}{1+t}</tex>. Так как <tex>\forall k:\ \rhof(|x^{(n)}_k, - x^{(m)}_k|) \le 2^k \rho(x^{(n)}, x^{(m)}) \to 0 </tex>, а <tex>|x^{(n)}_k - x^{(m)}_k| = \frac{1}{1 - f(|x^{(n)}_k - x^{(m)}_k|)} - 1</tex>, то <tex> x^{(n)} </tex> сходится в себе также и покоординатно.
Но по полноте <tex> \mathbb R </tex>, каждая из последовательностей по отдельной координате сходится: <tex> \forall k:\ x^{(n)}_k \to x_k </tex>.