Изменения

Перейти к: навигация, поиск

Метрические пространства

8 байт убрано, 13:38, 14 января 2013
м
Нет описания правки
|id=defms
|definition=
Для некоторого множества <tex>X</tex>, отображение <tex> \rho : X \times X \rightarrow to \mathbb{R^+} </tex> {{---}} называется '''метрикой''' на <tex>X</tex>, если выполняются аксиомы
# <tex> \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y </tex>
# <tex> \rho (x, y) = \rho (y, x) </tex>
|definition=
Для некоторого множества <tex>X</tex>, класс множеств <tex>\tau</tex> называется '''топологией''', если:
# <tex> X, \emptyset varnothing \in \tau</tex>
# Любое объединение (возможно, несчетное) <tex>\bigcup\limits_{\alpha} G_{\alpha}</tex> из <tex>\tau</tex> принадлежит <tex>\tau</tex>
# Любое конечное пересечение <tex>\bigcap\limits_{i=1}^{n} G_i</tex> из <tex>\tau</tex> принадлежит <tex>\tau</tex>
Для всех <tex>n</tex>, больших некоторого <tex>N</tex>, <tex>\rho(b, a_n) < r</tex>, и <tex>a_n \in V_r(b)</tex>, <tex>A \cap V_r(b)</tex> непусто.
Но <tex>A \subset F \Rightarrow implies A \cap G = \varnothing</tex> {{---}} противоречие, <tex>B \subset F</tex>.
}}
Замечание: в общем случае в топологических пространствах замыкания не определяются через предел последовательности, в этом смысле метрические пространства удобны.
(скопировано из первого курса, в Колмогорове на странице 112 есть доказательство поприятнее и поинтуитивнее)
<tex> f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} </tex>. Т.к. <tex> F_1 \cap F_2 = \varnothing </tex> и <tex> F_1, F_2 </tex> - замкнуты, то знаменатель не равен 0. Следовательно, <tex> f(x) </tex> корректна и непрерывна в силу непрерывности <tex> \rho </tex>. При этом: <tex> x \in F_1 \Rightarrow implies f(x) = 0; x \in F_2: f(x) = 1 </tex>. Рассмотрим на R пару интервалов: <tex> (- \infty; \frac 1 3) </tex> и <tex> (\frac 1 2, + \infty) </tex>. Т.к. <tex> f(x) </tex> неперывна, то прообраз открытого множества - открытое множество (это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее).
: <tex> G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) </tex>
: <tex> F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing </tex>, ч.т.д.
принцип вложенных шаров
|statement=
Пусть <tex>(X, \rho)</tex> — полное. <tex>\overline V_n</tex> — замкнутые шары. <tex>\overline V_{n + 1} \subset \overline V_n</tex>, <tex>r_n \to 0</tex>. Тогда <tex>\bigcap\limits_{n=1}^{\infty} \overline V_n \ne \emptysetvarnothing</tex>, и состоит из одной точки.
|proof=
Пусть <tex>a_n</tex> — центр соответствующего шара, тогда из вложенности <tex>\forall m > n: \rho(a_n, a_m) < r_n</tex>, то есть последовательность центров сходится в себе, так как <tex>r_n \to 0</tex>, тогда по полноте пространства последовательность центров сходится к <tex>a \in X</tex>.
Если в пространстве существует счетное всюду плотное множество, такое пространство называют '''сепарабельным'''.
<tex>A</tex> '''нигде не плотно''' в <tex>(X, \rho)</tex>, если <tex>\mathrm{Int} \mathrm{Cl} A = \emptysetvarnothing</tex>. В смысле метрических пространств это значит, что в любом шаре есть шар, не содержащий точек <tex>A</tex>.
: Например, <tex>\mathbb{Z}</tex> нигде не плотно в <tex>\mathbb{R}</tex>.
}}
Полное МП является множеством II категории в себе.
|proof=
Пусть <tex>X</tex> — полное и является множеством I категории, то есть представимо как <tex>\bigcup\limits_{n=1}^{\infty} M_n</tex>, где <tex>M_n</tex> — нигде не плотно в <tex>X</tex>. Возьмем замкнутый шар <tex>\overline V_0</tex>, например, радиуса 1. Так как <tex>M_1</tex> нигде не плотно в <tex>X</tex>, оно также нигде не плотно в <tex>\overline V_0</tex>, а, значит, существует замкнутый шар <tex>\overline V_1</tex> радиуса меньше <tex>1 \over 2</tex>, содержащийся в <tex>\overline V_0</tex> и не пересекающийся с <tex>M_1</tex> (<tex>M_1 \cap \overline V_1 = \emptysetvarnothing</tex>). Аналогично, <tex>M_2</tex> нигде не плотно в <tex>\overline V_1</tex>, и так далее действуя таким образом, построим систему вложенных замкнутых шаров (<tex>\overline V_{n+1} \subset \overline V_n</tex>) со стремящимся к нулю радиусом. В силу теоремы о вложенных шарах пересечение этих шаров должно содержать какую-то точку <tex>x</tex>, но эта точка не может лежать ни в одном из множеств <tex>M_n</tex> по построению, то есть, получили противоречие, и <tex>X</tex> не является множеством первой категории.
}}
Нужно установить равносильность сходимости <tex> \overline x^{(n)} \in R^{\infty} </tex> и ее сходимости в себе.
<tex> \Rightarrow implies </tex>:
Пусть <tex> \lim\limits_{n \to \infty} x^{(n)} = x </tex>.
1302
правки

Навигация