1302
правки
Изменения
м
Нет описания правки
неравенство Бесселя
|statement=
<tex> \sum \limits_{k=1}^{\infty} ( \langle x, e_k)\rangle^2 \le \|x\|^2</tex>
|proof=
Для некоторого набора коэффициентов <tex> \beta_k </tex> рассмотрим скалярное произведение:
<tex> 0 \le (x - \sum \limits_{k=1}^n \beta_k e_k, x - \sum \limits_{k=1}^n \beta_k e_k) = \|x\|^2 - 2\sum \limits_{k=1}^n \beta_k (x, e_k) + \sum \limits_{k=1}^n \beta_k^2 = </tex>
<tex> = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k^2 - 2(x, e_k)\beta_k) = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k - (x, e_k))^2 - \sum \limits_{k=1}^n( \langle x, e_k)\rangle ^2 </tex>.
Теперь, пусть <tex> \beta_k = (x, l_k) </tex>, имеем <tex> 0 \le \|x\|^2 - \sum \limits_{k=1}^n (x, e_k)^2 </tex>, устремив <tex> n </tex> к бесконечности, получим требуемое.
}}
равенство Парсеваля
|statement=
<tex>\forall x: \|x\|^2 = \sum\limits_{k=1}^{\infty} \langle x; , e_k \rangle^2 </tex> тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая.
|proof=
Это доказательство (правда, по кускам) тоже есть здесь: [[L_2-теория рядов Фурье]].
|author=Рисс-Фишер
|statement=
Пусть <tex>\{e_1, e_2, \ldots, e_n, \ldots\}</tex> - ортонормированная система в гильбертовом пространстве <tex>H</tex>, <tex>\sum\limits_{i=1}^{\infty} \alpha_i^2 \leq < +\infty</tex>. Тогда <tex>\exists ! x \in H : \alpha_i = \langle x, e_i \rangle</tex> и выполняется '''равенство Парсеваля''': <tex>\sum \alpha_i^2(x) = \|x\|^2</tex>
|proof=
И это доказательство тоже здесь есть: [[L 2-теория рядов Фурье#Теорема Рисса-Фишера|Теорема Рисса-Фишера]].