Изменения

Перейти к: навигация, поиск
м
Нет описания правки
|about = 3
|statement =Для любой функции <tex> f(x_{1}, ..., x_{n}) </tex> имеет место соотношение <tex> size_{B}(f)\lesssim 12\frac {2^{n}}{n} </tex>.
|proof = [[Файл:Synschemes -Theorem2.png|300px|thumb|right|Рис. 4]]
Пусть <tex> f(x_{1},...,x_{n}) </tex> произвольная булева функция. Рассмотрим разложение <tex> f </tex> по переменным <tex> x_{1},...,x_{n} </tex>, где <tex> 1 \le m \le n </tex>:
::<tex> size_{B}(S_{1}) \le size_{B}(K_{m}) \lesssim 2^{m} </tex>.
:2. Схема <tex> S_{2} </tex> реализует систему <tex> F(x_{m+1},...,x_{n}) </tex> всех булевых функций от переменных <tex> x_{m+1},...,x_{n} </tex>. Другими словами, подсхема <tex> S_{2} </tex> вычисляет все булевы функции, зависящие от последних <tex> n - m </tex> переменных. В силу [[#Th1|Теоремы 1]]
::<tex> size_{B}(S_{2}) \le (n-m)2^{n-m+1}2^{2^{n-m}} </tex>.
210
правок

Навигация