Изменения

Перейти к: навигация, поиск

Связь матрицы Кирхгофа и матрицы инцидентности

1 байт добавлено, 02:29, 30 декабря 2015
Нет описания правки
|proof=
При умножении <tex>i</tex>-й строки исходной матрицы <tex>I</tex> на <tex>j</tex>-й столбец транспонированной матрицы <tex>I^T </tex> перемножаются <tex>i</tex>-я и <tex>j</tex>-я строки исходной матрицы. При умножении <tex>i</tex>-й строки на саму себя на диагонали полученной матрицы получится сумма квадратов элементов <tex>i</tex>-й строки, которая равна, очевидно, <tex>\deg(v_i)</tex>. Пусть теперь <tex>i \ne j</tex>. Если <tex> (v_i, v_j) \in E </tex>, то существует ровно одно ребро, соединяющее <tex> v_i </tex> и <tex> v_j </tex>, следовательно результат перемножения <tex>i</tex>-й и <tex>j</tex>-й строк равен <tex>-1</tex>, в противном случае он равен <tex>0</tex> в силу отсутствия ребра, инцидентного обеим вершинам. Определенная данными условиями матрица и является матрицей Кирхгофа.
}}
{|class="wikitable"
==Источники информации==
#*Асанов М., Баранский В., Расин В. - Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Остовные деревья ]]
[[Категория: Свойства остовных деревьев ]]
Анонимный участник

Навигация