19
правок
Изменения
→Доказательство принадлежности к NPH
В качестве сертификата возьмем гамильтонов цикл в графе <math>G</math>. Очевидно, он удовлетворяет всем требованиям, налагаемым на сертификат. Проверяющая функция строится очевидным образом, работает за полиномиальное от размера входа время.
===Доказательство принадлежности к NPH===
Сведем задачу о гамильтоновом цикле (HAM) к UHAM. Пусть дан ориентированный граф <math>G</math>. Построим по нему неориентированный граф <math>H</math>. Для этого каждой вершине из графа <math>G</math> поставим в соответствие 3 вершины в графе <math>H</math>, соединив в <math>H</math> ребром первую получившуюся со второй, а вторую - с третьей. Для каждой дуги, инцидентной исходной вершине в <math>G</math> поставим в соответствие ребро в <math>H</math>. В случае, если дуга исходит из этой вершины, то соединим ребро с последней из получившихся вершин в <math>H</math>, а если она входит в вершину, то соединим с первой из получившихся(см. рисунок г). Таким образом, в построенном графе <math>H</math> гамильтонов путь будет тогда и только тогда, когда в исходном графе <math>G</math> будет ориентированный гамильтонов путь.
==Формулировка задачи о гамильтоновом пути в графе==