20
правок
Изменения
разные правки
|id = maximum_barrier
|neat = 1
|definition = '''Максимальным по включению [[ Декомпозиция Эдмондса-Галлаи#barrier | барьером ]] '''(англ.''maximum maximal barrier'') называется барьер максимальной мощности, не являющийся подмножеством любого другого барьера.
}}
|id = theorem_about_maximum_barriers
|statement = Пересечение всех максимальных по включению барьеров графа <tex>G</tex> равно <tex>A(G)</tex>.
|proof = Пусть <tex>H</tex> {{---}} пересечение всех максимальных по включению барьеров графа <tex>G</tex>. Чтобы доказать теорему, докажем, что <tex>A(G)\subset H</tex> и <tex>A(G)\supsetH</tex>.<br><br><tex>A(G)\subset H</tex><br> Пусть <tex>B</tex> {{---}} максимальный по включению барьер, <tex>|A(G)\setminus B| = k > 0</tex>, <tex>B' = B \cup A(G)</tex>, <tex>\Rightarrow |B'| = |B| + k</tex>.<br>
Докажем, что <tex>B'</tex> {{---}} барьер и получим противоречие. Для этого достаточно доказать, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, ведь в таком случае <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{def}(G)\ + |B| + k \Rightarrow \mathrm{odd}(G\setminus B')\ - |B'| \geqslant \mathrm{def}(G)</tex>. <br>
[[Файл: Max_barriers_a.png|170px|thumb|right|Рисунок <tex>1</tex>]]
Просуммировав прибавления по всем компонентам связности графа <tex>G - B</tex>, содержащим вершины из <tex>A(G)</tex>, мы получим, что <tex>\mathrm{odd}(G\setminus B')\ \geqslant \mathrm{odd}(G\setminus B)\ + k</tex>, что и требовалось доказать.<br>
<br>
<tex>A(G)\subsetsupset H</tex>.<br>
Предположим противное, пусть существует вершина <tex>x\notin A(G)</tex>, принадлежащая всем максимальным барьерам. По [[ Декомпозиция Эдмондса-Галлаи#barier_struct3| теореме о структуре барьера]] <tex>x\in C(G)</tex>.<br>
Рассмотрим максимальное паросочетание <tex>M</tex> графа <tex>G</tex>, пусть <tex>xy\in M</tex>.<br>
Докажем, что <tex>B = A(G)\cup \{ y \}</tex> {{---}} барьер графа <tex>G</tex>. Так как <tex>|B| = |A(G)| + 1</tex>, достаточно доказать, что <tex>\mathrm{odd}(B)\ \geqslant \mathrm{odd}(A(G))\ + 1</tex>.<br>
По [[ Декомпозиция Эдмондса-Галлаи#theorem_Gallai_Edmonds| теореме Эдмондса-Галлаи]] <tex>y\in C(G)</tex>. Пусть <tex>W</tex> {{---}} компонента связности графа <tex>G(C(G))</tex>, содержащая <tex>x</tex> и <tex>y</tex> (см. рисунок <tex>2</tex>). Вершины <tex>W</tex> разбиваются на пары соединённых рёбрами из <tex>M</tex>, поэтому <tex>|W|</tex> чётно.<br>
Множество <tex>W' = W\setminus \{ y \}</tex> содержит нечётное число вершин и является объединением нескольких компонент связности графа <tex> G - B</tex>, которых нет в <tex>G - A(G)</tex>. Среди этих компонент связности есть нечётная, значит <tex>B</tex> {{---}} барьер графа <tex>G</tex>.<br>
Пусть <tex>B'</tex> {{---}} максимальный барьер графа <tex>G</tex>, содержащий <tex>B</tex>.<br>