Изменения
→Вычисление
Нам требуется найти <tex>P(X_t = i | O) = P(X_t = i | O_{1,t-1} \cap O_{t,T})</tex>. Поскольку будущее Марковской цепи не зависит от прошлого, мы можем утверждать, что вероятность того, что мы будем наблюдать события <tex>O_{t,T}</tex> не зависит от того, что в прошлом мы наблюдали последовательность <tex>O_{1,t-1}</tex>, и, следовательно:
<tex>P(X_t = i | O_{1,t-1} \cap O_{t,T}) =</tex> <tex dpi="160">\fracdfrac{P(X_t = i | O_{1,t-1}) \cdot P(X_t = i | O_{t,T})}{P(O)}</tex> <tex>=</tex> <tex dpi="160">\fracdfrac{\alpha_{i}(t) \cdot \beta_{i}(t)}{P(O)}</tex>
=== Проход вперед ===
Теперь найдем вероятность того, что в момент <tex>t</tex> цепь будет в состоянии <tex>s</tex>:
<tex>P(X_t = s | O) = P(X_t = s | O_{1,t-1} \cap O_{t,T}) =</tex> <tex dpi="160">\fracdfrac{P(X_t = s | O_{1,t-1}) \cdot P(X_t = s | O_{t,T})}{P(O)}</tex> <tex>=</tex> <tex dpi="160">\fracdfrac{\alpha_{s}(t) \cdot \beta_{s}(t)}{P(O)}</tex> <tex>=</tex>
<tex>=</tex> <tex dpi="160">\fracdfrac{\alpha_s(t)\cdot \beta_s(t)}{\sum_{i \in S}\alpha_s(t)\cdot \beta_s(t)}</tex>
== Пример ==