Изменения

Перейти к: навигация, поиск

Основная теорема арифметики

Нет изменений в размере, 10:28, 2 июня 2018
Основная теорема арифметики
'''Существование'''. Пусть <tex>n</tex> — наименьшее натуральное число, неразложимое в произведение простых чисел. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если <tex>n</tex> составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел, значит, <tex>n</tex> тоже является произведением простых чисел. Противоречие.
'''Единственность'''. Пусть <tex>n</tex> — наименьшее натуральное число, разложимое в произведение простых чисел двумя разными способами. Если оба разложения пустые — они одинаковы. В противном случае, пусть <tex>p</tex> — любой из сомножителей в любом из двух разложений. Если <tex>p</tex> входит и в другое разложение, мы можем сократить оба разложения на <tex>p</tex> и получить два разных разложения числа <tex>\dfrac{n, }{p}</tex>, что невозможно. А если <tex>p</tex> не входит в другое разложение, то одно из произведений делится на <tex>p</tex>, а другое — не делится (как следствие из леммы Евклида, см. выше), что противоречит их равенству.
}}
[[Категория: Классы чисел]]
344
правки

Навигация