Изменения

Перейти к: навигация, поиск

Метод главных компонент (PCA)

18 428 байт добавлено, 04:25, 22 января 2020
PCA v0.0.1
'''Метод главных компонент''' (англ. ''Principal Components Analysis, PCA'') — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) <ref>[https://zenodo.org/record/1430636 Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space"]</ref> в 1901 г. Применяется во многих областях, таких как распознавание образов, компьютерное зрение, сжатие данных и т.п. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных или к [[Сингулярное разложение|сингулярному разложению]] матрицы данных. Иногда метод главных компонент называют преобразованием Кархунена-Лоэва (англ. ''Karhunen-Loeve'') <ref>[http://fourier.eng.hmc.edu/e161/lectures/klt/node3.html Karhunen-Loeve Transform (KLT)]</ref> или преобразованием Хотеллинга (англ. ''Hotelling transform'').

==Формальная постановка задачи==
[[File:Pearson pca example.jpg|300px|thumb|right|Иллюстрация к работе К. Пирсона (1901): даны точки <tex> P_i</tex> на плоскости, <tex> p_i</tex> — расстояние от <tex> P_i</tex> до прямой <tex> AB</tex>. Ищется прямая <tex> AB</tex>, минимизирующая сумму <tex>\sum_i p_i^2</tex>]]
Пусть имеется $n$ числовых признаков $f_j(x), j = 1, ... , n$. Объекты обучающей выборки будем отождествлять с их признаковыми описаниями: $x_i \equiv (f_1(x_i), ..., f_n(x_i)), i = 1, ..., l$. Рассмотрим матрицу $F$, строки которой соответствуют признаковым описаниям обучающих объектов:
$$F_{l \times n} =
\begin{pmatrix}
f_1(x_1) & ... & f_n(x_1)\\
... & ... & ...\\
f_1(x_l) & ... & f_n(x_l)
\end{pmatrix}
=
\begin{pmatrix}
x_1\\
...\\
x_l
\end{pmatrix}.$$

Обозначим через $z_i = (g_1(x_i), ..., g_m(x_i))$ признаковые описания тех же объектов в новом пространстве $Z = \mathbb{R}^{m}$ меньшей размерности, $m < n$:

$$G_{l \times m} =
\begin{pmatrix}
g_1(x_1) & ... & g_m(x_1)\\
... & ... & ...\\
g_1(x_l) & ... & g_m(x_l)
\end{pmatrix}
=
\begin{pmatrix}
z_1\\
...\\
z_l
\end{pmatrix}.$$

Потребуем, чтобы исходные признаковые описания можно было восстановить по новым описаниям с помощью некоторого линейного преобразования, определяемого матрицей $U = (u_{js})_{n \times m}$:

$$\hat{f}_j(x) = \sum_{s = 1}^{m} g_s(x)u_{js}, \; j = 1, ..., n, \; x \in X,$$

или в векторной записи: $\hat{x} = z U^T$. Восстановленное описание $\hat{x}$ не обязано в точности совпадать с исходным описанием $x$, но их отличие на объектах обучающей выборки должно быть как можно меньше при выбранной размерности $m$. Будем искать одновременно и матрицу новых признаковых описаний $G$, и матрицу линейного преобразования $U$, при которых суммарная невязка восстановленных описаний минимальна:

$$\Delta^2(G, U) = \sum_{i = 1}^{l} \| \hat{x}_i - x_i \|^2 = \sum_{i = 1}^{l} \| z_i U^T - x_i \|^2 = \| GU^T - F \|^2 \to \mathop{min}_{G, U},$$

где все нормы евклидовы.

Будем предполагать, что матрицы $G$ и $U$ невырождены: $rank \, G = rank \, U = m$. Иначе существовало бы представление $\bar{G} \bar{U}^T = G U^T$ с числом столбцов в матрице $\bar{G}$, меньшим $m$. Поэтому интересны лишь случаи, когда $m \leq rank \, F$.

==Решение==

Исчерпывающее решение сформулированной задачи даёт следующая теорема.

{{Теорема
|statement = Если $m \leq rank \, F$, то минимум $\Delta^2(G, U)$ достигается, когда столбцы матрицы $U$ есть собственные векторы $F^T F$, соответствующие $m$ максимальным собственным значениям. При этом $G = F U$, матрицы $U$ и $G$ ортогональны.

|proof = Запишем необходимые условия минимума:

<tex>
\frac{\partial \Delta^2}{\partial G} = (G U^T - F) U = 0;\\ \frac{\partial \Delta^2}{\partial U} = G^T (G U^T - F) = 0.
</tex>

Поскольку искомые матрицы $G$ и $U$ невырождены, отсюда следует:

<tex>
G = F U (U^T U)^{-1};\\ U = F^T G (G^T G)^{-1}.
</tex>

Функционал $\Delta^2(G, U)$ зависит только от произведения матриц $G U^T$, поэтому решение задачи $\Delta^2(G, U) \to \mathop{min}_{G, U}$ определено с точностью до произвольного невырожденного преобразования $R: G U^T = (G R) (R^{-1} U^T)$. Распорядимся свободой выбора $R$ так, чтобы матрицы $U^T U$ и $G^T G$ оказались диагональными. Покажем, что это всегда возможно.

Пусть $\tilde{G} \tilde{U}^T$ - произвольное решение задачи.

Матрица $\tilde{U}^T \tilde{U}$ симметричная, невырожденная, положительно определенная, поэтому существует невырожденная матрица $S_{m \times m}$ такая, что $S^{-1} \tilde{U}^T \tilde{U} (S^{-1})^T = I_m$.

Матрица $S^T \tilde{G}^T \tilde{G} S$ симметричная и невырожденная, поэтому существует ортогональная матрица $T_{m \times m}$ такая, что $T^T (S^T \tilde{G}^T \tilde{G} S) T = diag(\lambda_1, ..., \lambda_m) \equiv \Lambda$ - диагональная матрица. По определению ортогональности $T^T T = I_m$.

Преобразование $R = S T$ невырождено. Положим $G = \tilde{G} R$, $U^T = R^{-1} \tilde{U}^T$. Тогда

<tex>
G^T G = T^T (S^T \tilde{G}^T \tilde{G} S) T = \Lambda;\\ U^T U = T^{-1} (S^{-1} \tilde{U}^T \tilde{U} (S^{-1})^T) (T^{-1})^T = (T^T T)^{-1} = I_m.
</tex>

В силу $G U^T = \tilde{G} \tilde{U}^T$ матрицы $G$ и $U$ являются решением задачи $\Delta^2(G, U) \to \mathop{min}_{G, U}$ и удовлетворяют необходимому условию минимума. Подставим матрицы $G$ и $U$ в

<tex>
G = F U (U^T U)^{-1};\\ U = F^T G (G^T G)^{-1}.
</tex>

Благодаря диагональности $G^T G$ и $U^T U$ соотношения существенно упростятся:

<tex>
G = F U;\\ U \Lambda = F^T G.
</tex>

Подставим первое соотношение во второе, получим $U \Lambda = F^T F U$. Это означает, что столбцы матрицы $U$ обязаны быть собственными векторами матрицы $F^T F$, а диагональные элементы $\lambda_1, ..., \lambda_m$ - соответствующими им собственными значениями.

Аналогично, подставив второе соотношение в первое, получим $G \Lambda = F F^T G$, то есть столбцы матрицы $G$ являются собственными векторами $F F^T$, соответствующими тем же самым собственным значениям.

Подставляя $G$ и $U$ в функционал $\Delta^2(G, U)$, находим:

<tex>
\Delta^2(G, U) = \| F - G U^T \|^2 = tr \, (F^T - U G^t)(F - G U^T) = tr \, F^T (F - G U^T) = tr \, F^T F - tr \, F^T G U^T = \| F \|^2 - tr \, U \Lambda U^T = \| F \|^2 - tr \, \Lambda = \sum_{j = 1}^{n} \lambda_j - \sum_{j = 1}^{m} \lambda_j - \sum_{j = m + 1}^{n} \lambda_j,
</tex>

где $\lambda_1 , ..., \lambda_n$ - все собственные значения матрицы $F^T F$. Минимум $\Delta^2$ достигается, когда $\lambda_1, ..., \lambda_m$ - наибольшие $m$ из $n$ собственных значений.

Собственные векторы $u_1, ..., u_m$, отвечающие максимальным собственным значениям, называют ''главными компонентами''.
}}

==Свойства==

===Связь с сингулярным разложением===

Если $m = n$, то $\Delta^2(G, U) = 0$. В этом случае представление $F = G U^T$ является точным и совпадает с сингулярным разложением: $F = G U^T = V D U^T$, если положить $G = V D$ и $\Lambda = D^2$. При этом матрица $V$ ортогональна: $V^T V = I_m$.

Если $m < n$, то то представление $F \approx G U^T$ является приближённым. Сингулярное разложение матрицы $G U^T$ получается из сингулярного разложения матрицы $F$ путём отбрасывания (обнуления) $n - m$ минимальных собственных значений.

===Преобразование Карунена–Лоэва===

Диагональность матрицы $G^T G = \Lambda$ означает, что новые признаки $g_1, ..., g_m$ не коррелируют на обучающих объектах. Ортогональное преобразование $U$ называют ''декоррелирующим'' или преобразованием ''Карунена–
Лоэва''. Если $m = n$, то о прямое и обратное преобразование вычисляются с помощью одной и той же матрицы $U: F = G U^T$ и $G = F U$.

===Эффективная размерность===

Главные компоненты содержат основную информацию о матрице $F$. Число главных компонент $m$ называют также ''эффективной размерностью'' задачи. На практике её определяют следующим образом. Все собственные значения матрицы $F^T F$ упорядочиваются по убыванию: $\lambda_1 \geq ... \geq \lambda_n \geq 0$. Задаётся пороговое значение $\epsilon \in [0, 1]$, достаточно близкое к нулю, и определяется наименьшее целое $m$, при котором относительная погрешность приближения матрицы $F$ не превышает $\epsilon$:

$$E(m) = \frac{\| G U^T - F \|^2}{\| F \|^2} = \frac{\lambda_{m + 1} + ... + \lambda_n}{\lambda_1 + ... + \lambda_n} \leq \epsilon .$$

Величина $E(m)$ показывает, какая доля информации теряется при замене исходных признаковых описаний длины $n$ на более короткие описания длины $m$. Метод главных компонент особенно эффективен в тех случаях, когда $E(m)$ оказывается малым уже при малых значениях $m$. Если задать число $\epsilon$ из априорных соображений не представляется возможным, прибегают к ''критерию «крутого обрыва»''. На графике $E(m)$ отмечается то значение $m$, при котором происходит резкий скачок: $E(m - 1) \gg E(m)$, при условии, что $E(m)$ уже достаточно мало.

==Визуализация многомерных данных==

Метод главных компонент часто используется для представления многомерной выборки данных на двумерном графике. Для этого полагают $m = 2$ и полученные пары значений $(g_1(x_i), g_2(x_i)), i = 1, ..., l$, наносят как точки на график. Проекция на главные компоненты является наименее искаженной из всех линейных проекций многомерной выборки на какую-либо пару осей. Как правило, в осях главных компонент удаётся увидеть наиболее существенные особенности исходных данных, даже несмотря на неизбежные искажения. В частности, можно судить о наличии кластерных структур и выбросов. Две оси $g_1$ и $g_2$ отражают «две основные тенденции» в данных. Иногда их удаётся интерпретировать, если внимательно изучить, какие точки на графике являются «самыми левыми», «самыми правыми», «самыми верхними» и «самыми нижними». Этот вид анализа не позволяет делать точные количественные выводы и обычно используется
с целью понимания данных. Аналогичную роль играют многомерное шкалирование <ref>[https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B3%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D0%B5_%D1%88%D0%BA%D0%B0%D0%BB%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 Многомерное шкалирование]</ref> и карты Кохонена <ref>[https://ru.wikipedia.org/wiki/%D0%A1%D0%B0%D0%BC%D0%BE%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D0%B8%D0%B7%D1%83%D1%8E%D1%89%D0%B0%D1%8F%D1%81%D1%8F_%D0%BA%D0%B0%D1%80%D1%82%D0%B0_%D0%9A%D0%BE%D1%85%D0%BE%D0%BD%D0%B5%D0%BD%D0%B0 Самоорганизующаяся карта Кохонена]</ref>.

==Пример кода scikit-learn==
Пример применения PCA к датасету Iris для уменьшения размерности:
<span style="color:#3D9970># Импорт библиотек</span>
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import decomposition
from sklearn import datasets

<span style="color:#3D9970># Загрузка данных</span>
centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

<span style="color:#3D9970># Инициализация графика</span>
fig = plt.figure(1, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
plt.cla()

<span style="color:#3D9970># Преобразование данных датасета Iris, уменьшающее размерность до 3</span>
pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X)

[[File:Sklearn pca plot.png|300px|thumb|right|Применения PCA к датасету Iris]]
<span style="color:#3D9970># Отображение меток и преобразованных данных на графике</span>
for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
ax.text3D(X[y == label, 0].mean(),
X[y == label, 1].mean() + 1.5,
X[y == label, 2].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.nipy_spectral,
edgecolor='k')
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
plt.show()

==См. также==
*[[Уменьшение размерности]]
*[[Сингулярное разложение]]
==Примечания==
<references/>
==Источники информации==
#[http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82 machinelearning.ru — Метод главных компонент]
#[https://www.youtube.com/watch?v=wcJ0nSUr7ws Лекция "Регрессионный анализ и метод главных компонентов"] {{---}} К.В. Воронцов, курс "Машинное обучение" 2014
#[http://research.cs.tamu.edu/prism/lectures/pr/pr_l9.pdf PCA] {{---}} курс ML Texas A&M University
#[https://en.wikipedia.org/wiki/Principal_component_analysis Principal Component Analysis] {{---}} статья про Principal Component Analysis в Wikipedia
#[https://towardsdatascience.com/understanding-pca-fae3e243731d Understanding PCA]

[[Категория: Машинное обучение]]
[[Категория: Уменьшение размерности]]
[[Категория: Метод главных компонент]]
15
правок

Навигация