Изменения

Перейти к: навигация, поиск

Обучение в реальном времени

6 байт добавлено, 21:47, 20 апреля 2020
Функция ожидаемого риска (Expected Risk Function)
События <tex>z</tex> моделируются как случайные независимые наблюдения, взятые из неизвестного распределения вероятности <tex>\mathrm{d}P(z)</tex>. Функция риска <tex>J(w)</tex> - это ожидание функции потерь <tex>Q(z, w)</tex> для фиксированного значения параметра <tex>w</tex>.
Функция ожидаемого риска <tex>J(w)</tex> не может быть минимизирована напрямую, потому что распределение <tex>\mathrm{d}P(z)</tex> неизвестно. Однако возможно вычислить приближение <tex>J(w)</tex>, используя конечный обучающий набор независимых наблюдений <tex>z_1, ... , z_L</tex>.
<tex> J (w) \thickapprox \hat{J_L}(w) \stackrel{\triangle}{=} \frac{1}{L} \sum_{n=1}^L Q(z_n,w) </tex>
34
правки

Навигация