Изменения

Перейти к: навигация, поиск
м
small changes
Кажется, что при <tex>m > 1</tex> дерево будет расти вечно, так как каждая вершина в момент времени <tex>j</tex> должна иметь потомков, однако при <tex>p_0 > 0</tex> с положительной вероятностью у корня может вообще не быть потомков. В исходном <tex>G(n,\frac{d}{n})</tex> <tex>m</tex> играет роль <tex>d</tex>, ввиду того, что <tex>d = E(k)</tex>.<br>
[[Файл:Extinction_probability_equation_root_random_graph.png|thumb|300px|center|Решение уравнения f(x)=x]]
Пользуясь описанными выше утверждениями[[#lemma2|леммой 2]] и [[#th5|теоремой 5]], можно доказать, что:<br>
# <tex>m < 1</tex> <tex>||</tex> <tex>m = 1</tex> <tex>\&</tex> <tex>p_1 < 1</tex> {{---}} вероятность исчезновения <tex> = 1</tex>;<br>
# <tex>m = 1</tex> <tex>\&</tex> <tex>p_1 = 1</tex> {{---}} вероятность исчезновения <tex> = 0</tex>;<br>
# <tex>m > 1</tex> {{---}} вероятность исчезновения <tex> < 1</tex>, но, если <tex>p_0 = 0</tex>, процесс не завершится, так как у каждой вершины найдется по крайней мере один потомок;<br>
Подробное описание доказательств доказательства данного факта, а также самих утверждений можно найти здесь<ref name="chap4" />.
== Вывод ==
436
правок

Навигация