Изменения

Перейти к: навигация, поиск

Распознавание текста на изображении

19 байт добавлено, 11:34, 29 сентября 2020
Typos, grammar, etc until Процесс распознавания текста
{{В разработке}}
'''Распознавание текста на изображениях''' ( оптическое распознавание символом (англ. optical character recognition, OCR)) {{---}} одно из направлений распознавания образов, задача которого заключается в переводе изображений рукописного, машинописного или печатного текста в текстовые данные, использующиеся для представления символов в компьютере (например, в текстовом редакторе).
== Общая информация ==
== История ==
Разработка OCR-систем берет начало из технологий, связанных с телеграфией и созданием считывающих устройств для слепых. В 1914 году Эммануэль Гольдберг разработал устройство, которое считывало символы и преобразовывало их в стандартный телеграфный код. Одновременно Эдмунд Фурнье д'Альбе разработал «Оптофон», ручной сканер, который , при перемещении по напечатанной странице , вырабатывал тональные сигналы, соответствующие определенным буквам или символам.
В 1974 году Рэй Курцвейл создал компанию «Kurzweil Computer Products, Inc», и начал работать над развитием первой системы оптического распознавания символов, способной распознать распознавать текст, напечатанный любым шрифтом. Курцвейл считал, что лучшее применение этой технологии {{---}} создание машины чтения для слепых, которая позволила бы слепым людям иметь компьютер, умеющий читать текст вслух. Данное устройство требовало изобретения сразу двух технологий {{---}} ПЗС (прибор с зарядовой связью<ref>https://ru.wikipedia.org/wiki/ПЗС </ref>) планшетного сканера и синтезатора, преобразующего текст в речь.
Первой коммерчески успешной программой, распознающей кириллицу, была стала программа «AutoR» российской компании «ОКРУС». Алгоритм «AutoR» был компактный, быстрый и в полной мере «интеллектуальный», то есть по-настоящему шрифтонезависимый. Этот алгоритм разработали и испытали ещё в конце 60-х два молодых биофизика, выпускники МФТИ {{---}} Г. М. Зенкин и А. П. Петров. В настоящее время алгоритм Зенкина-Петрова применяется в нескольких прикладных системах, решающих задачу распознавания графических символов.
В 1993 году вышла технология распознавания текстов российской компании ABBYY. На её основе создан ряд корпоративных решений и программ для массовых пользователей. Технологии распознавания текстов ABBYY OCR лицензируют международные ИТ-компании, такие как Fujitsu, Panasonic, Xerox, Samsung[3], EMC и другие.
В 2000-х годах производительность и компактность OCR-системы стали доступны в режиме позволила представить на рынок онлайн в том числе -сервисы по переводу текста с одного языка на другой. Со временем такие программы получили возможность обрабатывать изображения как печатного, так и в рукописного текста. С развитием технологий производства мобильных устройств и упрощения процесса разработки мобильных приложения, напримерприложений, перевод знаков на иностранный язык на смартфоне в режиме реального времени. Различные коммерческие и открытые OCR-системы доступны для большинства распространенных алфавитовстали неотъемлемой частью разнообразных программ: от развлекательных до обучающих, включая латинский, кириллический, арабский, иврит, индийский, деванагарский, тамильский, китайские, японские и корейские иероглифыот мобильных помощников до систем управления.
== Применение систем распознавания текстов ==
Системы OCR применяются во многих областях. Вот некоторые из задач, которые решают системы распознавания текстов:
* считывание Считывание данных с бланков и анкет;* автоматическое Автоматическое распознавание номерного знака;* распознавание Распознавание паспортных данных;* извлечение Извлечение информации из визитных карточек в список контактов;* более быстрое создание текстовых Создание цифровых версий печатных и рукописных документов, например, сканирование книг для проекта "Гутенберг"<ref>https://ru.wikipedia.org/wiki/Проект_«Гутенберг»</ref>;* вспомогательная технология Технология для слепых помощи слепым и слабовидящих пользователей* оцифровывание документов с целью получить возможность удобной работы с текстом {{---}} редактирование, поиск слов или строк или анализ.слабовидящим;
== Типовые проблемы, связанные с системами OCR ==
С задачей распознавания символов связаны следующие проблемы:
* Разнообразие форм начертания символовДокумент : документ может содержать несколько шрифтом шрифтов сразу: как распространенных, так и нестандартных;$\;\;\;\;\;\, что усложняет задачу распознавания текста. Некоторые $символы похожи могут быть схожи по начертанию (например, “G” и “6”, “S” и “5”, “U” и “V” и тд.) и в нестандартных шрифтах отличить их еще затруднительней;* Искажение изображения, содержащего текст:** Шумы при печати;** Изображение плохого качества Плохое качество изображения (засветзасвеченность, размытость);* вариации Вариации размеров , масштаба и масштаба положения символов.на странице;Существенным является и влияние * Влияние исходного масштаба печати, поэтому : система оптического распознавания текста должна быть нечувствительной (устойчивой) $\;\;\;\;\;\,$по отношению к способу верстки, расстоянию между строками и другим параметрам печати. 
== Процесс распознавания текста ==
Далее в каждом блоке выделяются базовые линии, которые позволяют разделить блок на строки, а в дальнейшем на символы. Это позволяет системе обрабатывать каждый символ по отдельности. Сначала производится предварительное разбиение изображения текста на отдельные изображения символов и после этого определяется зависимость между разными изображениями с оценкой расстояния между ними. На этапе распознавания результаты разбиения могут уточняться с целью дополнительного разбиения или объединения нескольких полученных изображений. Уточнения могут строиться на основе контекста: если часть символов хорошо распознаны, они могут указать на нераспознанный, либо факт уточнения может основываться на плохом распознании получившегося изображения символа.
=== Распознавание символы символов ===
Для распознавания символа существуют 2 основных алгоритма.
436
правок

Навигация