Изменения

Перейти к: навигация, поиск

Участник:Feorge

1366 байт убрано, 16:01, 28 июня 2021
Последние правки
Пусть <tex>B = \{0, 1\}</tex> — булевое множество. Рассмотрим <tex>B^n</tex> и [[Расстояние Хэмминга#def1|расстояние Хемминга]] <tex>H(x,y)</tex>. Пусть <tex>c:\Sigma \to B^n</tex> {{---}} разделяемый код постоянной длины. Обозначим <tex>\min\limits_{\substack{x, y\in \Sigma \\ x\neq y}}H(c(x), c(y)) = d(c)</tex>.
{{Определение|neat = 1
|definition=
Код <tex>c</tex> ''обнаруживает'' <tex>k</tex> ошибок, если <tex>d(c) > k</tex>.
}} <br />
{{Определение
|neat = 1
|definition=
Код <tex>c</tex> ''исправляет'' <tex>k</tex> ошибок, если <tex>d(c) > 2k</tex>.
Для составления оценок снизу и сверху на параметры кодирования нам понадобится понятие шара.
{{Определение
|neat = 1
|definition=
Булев шар {{---}} подмножество <tex>B^n</tex> вида <tex> \{ y : H(x,y) \leqslant r\}</tex>. <tex>x</tex> называется его центром, <tex>r</tex> {{---}} радиусом. Булев шар с центром <tex>x</tex> и радиусом <tex>r</tex> обознчается <tex>S(x,r)</tex>.
}} <br />
{{Определение
|neat= 1
|definition=
Обьёмом шара <tex>S(x,r)</tex> в <tex>B^n</tex> называется величина <tex>|S(x,r)|</tex>.
|statement=
Если выполнено неравенство <tex> mV(n,2k) \leqslant 2^n</tex>, то существует код <tex>c:\Sigma \to B^n</tex> для <tex>m</tex>-символьного алфавита <tex>\Sigma </tex>, исправляющий <tex>k</tex> ошибок.
|proof=Построим этот код алгоритмом. Сопоставим первому символу <tex>x_1</tex> из <tex>\Sigma</tex> в <tex>B^n</tex> кодовое слово <tex>c(x_1)\in B^n</tex> и вырежем из <tex>B^n</tex> шар <tex>S(x_1,2k)</tex>. Для второго символа <tex>x_2</tex> повторим ту же процедуру, выберем ему кодовое слово <tex>c(x_2)\in B^n \setminus S(x_1, 2k)</tex>. На каждом шаге будем выбирать для каждого символа <tex>x_{i+1}</tex> некоторое слово <tex>c(x_{i+1}) \in B^n \setminus \bigcup_{j=1}^{i} S(x_j, 2k) </tex>, всего на выбор <tex>i+1</tex>-ого слова доступны <tex>2^n - iV(n,k) \geqslant V(n,k)</tex> вариантов.Неравенство гарантирует нам, что по каждому символу мы сможем выбрать кодовое слово так, что оно будет удаленно от остальных кодовых слов на расстояние большее, чем <tex>2k</tex>, удовлетворяя неравенство <tex>d(c)>2k</tex>. Таким образом построенный код исправляет <tex>k</tex> ошибок.
}}
Примером кода для случая <tex>k=1</tex> является [[Избыточное кодирование, код Хэмминга#def1|код Хэмминга]].
10
правок

Навигация