Изменения

Перейти к: навигация, поиск

Тестовая страница2

37 009 байт добавлено, 08:12, 13 июня 2011
Новая страница: «№1. Суммирование расходящихся рядов методом средних арифметических Ряд <tex>\sum\limits_{n = 0}^\infty …»
№1. Суммирование расходящихся рядов методом средних арифметических
Ряд <tex>\sum\limits_{n = 0}^\infty a_n</tex> имеет сумму <tex>S</tex> по '''методу средних арифметических''' (обозначают аббревиатурой с.а.), если <tex>S = \lim\limits_{n \rightarrow \infty} \frac 1{n + 1} \sum\limits_{k = 0}^n S_k</tex>.

№2. Суммирование расходящихся рядов методом Абеля
Пусть дан ряд <tex>\sum\limits_{n = 0}^{\infty}a_n</tex> и <tex> \forall t \in (0; 1) : \sum\limits_{n = 0}^{\infty}a_nt^n = f(t)</tex> (в классическом смысле). Тогда этот ряд имеет сумму <tex> S </tex> по '''методу Абеля''', если <tex> S = \lim\limits_{t \to 1 - 0} f(t)</tex>.

№3. Теорема Фробениуса
Условие
<tex> \sum\limits_{n = 0}^\infty a_n = S </tex> (с.а) <tex> \Rightarrow </tex> <tex> \sum\limits_{n = 0}^\infty a_n = S </tex> (А).

№4. Тауберова теорема Харди
Условие
<tex>\sum\limits_{k = 0}^\infty a_k = S</tex>(с.а.)
Тогда, если существует такое <tex> M > 0 </tex>, что <tex> \forall n \in \mathbb N: \sum\limits_{k = n + 1}^\infty a_k^2 \leq \frac{M}n </tex>, то <tex> \sum\limits_{k=0}^\infty a_k = S</tex>.

№5. Равномерная сходимость функционального ряда. Критерий Коши
<tex>f_1, f_2, \ldots</tex> равномерно сходится к <tex>f(x)</tex>, если
<tex>\forall \varepsilon\ > 0\ \exists N\ \forall n > N\ \forall x \in E : |f_n(x) - f(x)| < \varepsilon</tex>
Пишут, что <tex>f_n \rightrightarrows f</tex>.

Пусть на <tex>E</tex> задан функциональный ряд <tex>\sum\limits_{n = 1}^\infty f_n</tex>. Тогда он равномерно сходится к
<tex>f = \sum f_n</tex>, если
<tex>\forall\varepsilon\ > 0\ \exists N\ \forall n > N\ \forall x \in E : |S_n(x) - f(x)| < \varepsilon</tex>

Критерий Коши равномерной сходимости
УсловиеРяд равномерно сходится на <tex>E</tex> <tex>\iff</tex> <tex>\forall\varepsilon\ > 0\ \exists N\ \forall m, n : m \geq n > N\ \forall x \in E : \left|\sum\limits_{k = n}^m f_k(x)\right| < \varepsilon</tex>

№6. Признак Вейерштрасса
Условие
<tex>\sum\limits_{n = 1}^\infty f_n</tex>, <tex>\forall n \in \mathbb{N} </tex> , <tex> \forall x \in E : |f_n(x)| \leq a_n</tex>, <tex>\sum\limits_{n = 1}^\infty a_n</tex> - сходится.
Тогда <tex>\sum\limits_{n = 1}^\infty f_n</tex> равномерно сходится на <tex>E</tex>.

№7. Признак типа Абеля-Дирихле
Условие
Пусть: * <tex>\exists M: \forall x \in E \quad \forall N \in \mathbb N \quad \left |\sum\limits_{n = 1}^N b_n(x) \right| \le M</tex>
* <tex>\forall \varepsilon > 0 \quad \exists N \in \mathbb N \quad \forall n > N \quad \forall x \in E \quad |a_n(x)| < \varepsilon;\quad\exists N:\forall n>N\quad a_n \ge a_{n+1}</tex>
Тогда ряд <tex>\sum\limits_{n = 1}^\infty a_n(x)b_n(x)</tex> равномерно сходится.

№8. Предельный переход под знаком функционального ряда
Условие
Пусть на множестве <tex>E</tex> заданы функции <tex>f_n</tex>, <tex>a</tex> - предельная точка этого множества и
<tex>\forall n \in \mathbb{N}\ \exists\ \lim \limits_{x \to a} f_n(x)</tex>. Тогда если <tex>\sum \limits_{n = 0}^{\infty} f_n</tex> - равномерно
сходится на <tex>E</tex>, то выполняется равенство :
<tex>\lim \limits_{x \to a} \sum \limits_{n = 0}^{\infty} f_n(x) = \sum \limits_{n = 0}^{\infty} \lim\limits_{x \to a} f_n(x)</tex>

№9. Условия почленного интегрирования функционального ряда
Условие
Пусть <tex> f_{n} </tex> интегрируема и равномерно сходится к <tex> f </tex> на <tex> [a; b] </tex>. Тогда <tex> f </tex> тоже интегрируема, и
<tex> \lim \limits_{n \to \infty} \int\limits_{a}^{b} f_{n} = \int\limits_{a}^{b}f </tex>.
Условие
Пусть функциональный ряд состоит из <tex>f_n \in \mathcal{R}\left[ a, b \right ]</tex> и равномерно сходится на этом отрезке.
Тогда сумма ряда будет интегрируемой функцией, и будет выполняться:
<tex>\int\limits_{a}^{b} \sum\limits_{n = 1}^{\infty} f_{n}(x)dx =
\sum\limits_{n = 1}^{\infty} \int\limits_{a}^{b} f_{n}(x)dx</tex>

№10. Условия почленного дифференцирования функционального ряда
Условие
Пусть на <tex> (a, b) </tex> задан функциональный ряд <tex>\sum\limits_{n = 1}^{\infty} f_n</tex>, <tex>\exists c \in \langle a, b \rangle, \sum\limits_{n = 1}^{\infty}f_n(c)</tex> - сходится.
Пусть также <tex>\exists f_n'</tex> - непрерывна на <tex>\langle a, b \rangle</tex> и
<tex>\sum\limits_{n = 1}^{\infty} f_n'</tex> - равномерно сходится на <tex>\langle a, b\rangle</tex>, тогда на <tex>\langle a, b \rangle</tex> выполняется :
<tex>(\sum\limits_{n = 1}^{\infty} f_n(x))' = \sum\limits_{n = 1}^{\infty}f_n'(x)</tex>.

№11. Лемма Абеля
Условие
Пусть для некоторого <tex>x_0</tex> <tex>\sum\limits_{n = 0}^{\infty} a_n x_0^n</tex> - сходится.
Тогда <tex>\forall x_1 : |x_1| < |x_0|</tex> ряд <tex>\sum\limits_{n = 0}^\infty |a_n x_1^n|</tex> сходится.

№12. Теорема о радиусе сходимости
<tex>R = \sup \{|x| : \sum\limits_{n = 0}^\infty a_n x^n</tex> - сходится <tex>\}</tex>. Заметим, что возможны случаи <tex>R = 0</tex> и <tex>R = \infty</tex>.
Условие
Пусть есть ряд <tex>\sum\limits_{n = 0}^\infty a_n x^n</tex> и <tex>R</tex> - его радиус сходимости. Тогда
1) <tex>|x| < R</tex> <tex>\Rightarrow</tex> ряд абсолютно сходится.
2) <tex>\forall [a; b] \in (-R; R)</tex> ряд сходится абсолютно и равномерно.
3) <tex>|x| > R</tex> <tex>\Rightarrow</tex> ряд расходится.
4) <tex>|x| = R</tex> - неопределённость.

№13. Вычисление радиуса сходимости
Условие
Пусть есть <tex>\sum\limits_{n = 0}^\infty a_n x^n</tex>, <tex>R</tex> - его радиус сходимости. Тогда:
1) Если <tex>\exists q = \lim\limits_{n \to \infty} \left|\frac{a_n}{a_{n + 1} }\right|</tex>, то <tex>R = q</tex>.
2) Если <tex>\exists q = \lim\limits_{n \to \infty} \sqrt[n]{a_n}</tex>, то <tex>R = \frac1q</tex>
Замечание: на самом деле, есть формула Коши-Адамара, применимая в любом случае: <tex>R = \frac1{\overline{\lim} \sqrt[n]{|a_n|} }</tex>. <s> Но она сложная и никому не нужна. </s> Формула теоретическая, верхний предел вычислить часто невозможно.

№14. Дифференцирование и интегрирование степенных рядов
Вопрос: "Каковы будут радиусы сходимости почленно проинтегрированных или продифференцированных рядов?"
Ответ: "Почленное интегрирование или дифференцирование не меняет радиуса сходимости ряда".
утв:
УсловиеПромежуток сходимости степенного ряда совпадает с промежутком сходимости продифференцированного степенного ряда

№15. Степенной ряд, как ряд Тейлора своей суммы
<wikitex>
Пусть $ f(x) = \sum\limits_{n = 0}^{\infty} a_n (x - x_0)^n, \qquad R > 0 \qquad (x_0 - R; x_0 + R) $.
$ \sum\limits_{n = 0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n $ - ряд Тейлора функции по степеням $ (x - x_0) $.
Сопоставим ряд с формулой Тейлора функции, которую можно писать для любого $ n $.
$ f(x) = \sum\limits_{k = 0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x) \Rightarrow $ ряд получается из формулы при $ n \to \infty $. Если $ r_n(x) \rightarrow 0 $ при $ n \rightarrow \infty $, то можно перейти к пределу.
$ f(x) = \sum\limits_{k = 0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k $, что является разложением функции в степенной ряд в точке $ x $.
Если при всех x из некоторой окрестности точки $ x_0 $ функция разлагается в степенной ряд, то это будет обязательно ряд Тейлора.
Если разложение возможно, то единственно. Изучается с помощью поведения остатка $ r_n(x) $.
</wikitex>

№16. Достаточное условие разложимости функции в ряд Тейлора
Для того, чтобы функция была разложима в ряд Тейлора, достаточно чтобы <tex> r_n \xrightarrow[n \to \infty]{} 0 </tex>

№17. Разложение в степенной ряд показательной и логарифмической функций
<wikitex>
$e^x \stackrel{def}{=} \sum\limits_{k = 0}^{\infty} \frac{x^k}{k!} $
$ \ln(1 + x) = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac{x^k}k + r_n(x) $, причем $ r_n(x) = \frac{\ln^{(n + 1)} (1 + \theta_n x)}{(n + 1)!} x^{n + 1}, \theta_n \in (0; 1) $
</wikitex>

№18. Разложение в степенной ряд тригонометрических функций
<wikitex>
$\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$
$\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$
</wikitex>

№19. Биномиальный ряд Ньютона
<wikitex>
$ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $
$ r_n(x) = \frac{a (a - 1) \dots (a - n + 1) (a - n) (1 + \theta x)^{a - n - 1}}{n!} (1 - \theta)^n x^{n + 1} $ (в форме Коши)
</wikitex>

№20. Формула Стирлинга
<wikitex>
$ n! = \sqrt{2 \pi n} {\left ( \frac ne \right )}^n e^{\frac{\theta_n}{12n}} $
</wikitex>

№21. Нормированное пространство: арифметика предела
Условие
Пусть <tex>x_n</tex>, <tex>y_n</tex> — последовательности точек нормированного пространства <tex>(X, \|\cdot\|)</tex>, а <tex>\alpha_n</tex> — вещественная последовательность. Известно, что <tex>x_n \rightarrow x</tex>, <tex>y_n \rightarrow y</tex>, <tex>\alpha_n \rightarrow \alpha</tex>.
Тогда:
# <tex>x_n + y_n \rightarrow x + y</tex>
# <tex>\alpha_n x_n \rightarrow \alpha x</tex>
# <tex>\|x_n\| \rightarrow \|x\|</tex>

№22. Ряды в банаховых пространствах
Нормированное пространство <tex>(X, \|\cdot\|)</tex> называется '''B-пространством''', если для любой последовательности элементов <tex>X</tex>, для которых из <tex>\|x_n - x_m\| \to 0</tex> при <tex>n, m \to \infty</tex> вытекает существование предела последовательности.
<tex>\left \| \sum\limits_{k = 1}^\infty x_k \right \| \le \sum\limits_{k = 1}^\infty \| x_k \|</tex>

№23. Унитарные пространства, неравенство Шварца
Линейное множество со скалярным произведением называется унитарным пространством.
утв
<tex>|(x, y)| \le \sqrt{(x, x)}\sqrt{(y, y)}</tex>

№24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
Среди нормированных пространств выделяется подкласс так называемых гильбертовых пространств.
Пусть <tex>H</tex> — линейное пространство. Величина <tex>(x, y) \in \mathbb R</tex> называется скалярным произведением точек множества <tex>H</tex>, если она удовлетворяет следующим трём аксиомам:
# <tex>(x, x) \ge 0</tex>, <tex>(x, x) = 0 \iff x = 0</tex>
# <tex>(x, y) = (y, x)</tex>
# <tex>(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)</tex>
Базируясь на этом неравенстве, определим норму <tex>\|x\| = \sqrt{(x, x)}</tex>.
Доказанное неравенство треугольника превращает <tex>H</tex> в нормированное пространство. Если оно является B-пространством, то его называют '''гильбертовым пространством'''.

Теорема Бесселя
Условие
Пусть <tex> l_1 \dots \l_n \dots </tex> - ОНС в <tex> H </tex> и <tex> x \in H </tex>, тогда
<tex> \sum \limits_{k=1}^{\infty} (x, l_k)^2 \le \|x\|^2</tex>
Экстремальное свойства ряда Фурье заключается в следующем: <tex>\sum \limits_{k=1}^{\infty} (x, l_k)^2</tex> располагается ближе всего к <tex>\|x\|^2</tex>, если <tex>l_k</tex> — ряд Фурье <tex>x</tex>.

№25. Ортогональные ряды в гильбертовых пространствах.
Ряд <tex> \sum\limits_{k = 1}^{\infty} x_k </tex> является '''ортогональным''', если <tex> \forall n \ne m \Rightarrow (x_n, x_m) = 0 </tex>.
В частности, так как <tex> l_1, \dots, l_n, \dots </tex> - ОНС в <tex> H </tex>(гильбертово), то <tex> \sum\limits_{k = 1}^{\infty} \alpha_k l_k </tex> - ортогональный ряд.

Условие
<tex>\sum\limits_{k = 1}^{\infty} x_k </tex> - сходящийся ортогональный ряд <tex> \Leftrightarrow \sum\limits_{k = 1}^{\infty} \| x_k \|^2 < + \infty </tex>.
При этом, если x - сумма ряда, то выполняется теорема Пифагора: <tex> \| x \|^2 = \sum\limits_{k = 1}^{\infty} \| x_k \|^2 </tex>

№26. Принцип сжатия Банаха
Пусть <tex>X</tex> - B-пространство. Пусть <tex>\overline V</tex> - замкнутый шар в <tex>X</tex>.<br>
<tex> \mathcal{T} : \overline V \to \overline V</tex> - '''сжатие''' на шаре <tex>\overline V</tex>, если <tex>\exists q \in (0;1) \ \forall x',x'' \in \overline V</tex> <tex> : \| \mathcal{T}x''-\mathcal{T}x' \| \le q \|x''-x'\|</tex>.
Теорема Банаха
У любого сжимающего отображения существует ровно одна неподвижная точка <tex>x^*=\mathcal{T}x^*</tex>.

№27. Линейные операторы в НП: непрерывность и ограниченность
Пусть <tex>X</tex>, <tex>Y</tex> — нормированные пространства, <tex>~\mathcal{A}\colon X \to Y</tex>. <tex>\mathcal{A}</tex> называется линейным оператором, если <tex>\mathcal{A} (\alpha x + \beta y ) = \alpha \mathcal{A} \left( x \right) + \beta \mathcal{A} \left( y \right), \forall \alpha, \beta \in \mathbb {R}, \forall x, y \in X</tex>
Л.о. называется ограниченным, если <tex>\exists m \in \mathbb {R} \ge 0: \forall x \in X \left \| \mathcal{A} \left( x \right) \right \| \le m \left \| x \right \|</tex>
Л.о. непрерывен в X, если <tex>\lim \limits_{\mathcal {4} x \to 0} \mathcal{A} \left( x + \mathcal{4}x \right) = \mathcal{A} \left( x \right) </tex>
Условие
Линейный оператор непрерывен тогда и только тогда, когда он ограничен.

№28. Норма линейного оператора
Нормой ограниченного оператора <tex>\left \| \mathcal{A} \right \|</tex> является <tex>\sup \limits_{\left \| x \right \| \le 1} \left \| \mathcal{A}x \right \|</tex>.

№29. Линейные функционалы в унитарном пространстве, разделение точек
'''Линейный функционал''' - линейный оператор вида <tex> \mathcal{A}: H \rightarrow \mathbb{R} </tex>, где <tex> H </tex> - гильбертово пространство.
Условие
Для любого <tex> x_0 \in H </tex> существует ограниченный линейный функционал <tex>f \colon H \to \mathbb{R}</tex>, обладающий такими свойствами:
# <tex>f \left ( x_0 \right ) = \left \| x_0 \right \|</tex>
# <tex>\left \| f \right \| = 1</tex>
Условие
<tex>\forall x \ne y\ \exists</tex> линейный функционал <tex>\mathcal{A} : \mathcal{A}x \ne \mathcal{A}y</tex>
Рассмотрим <tex>x-y</tex>. <tex>\exists \mathcal{A} : \mathcal{A}(x - y) = \| x- y\|</tex>.
По линейности, <tex>\mathcal{A}(x - y) = \mathcal{A}x - \mathcal{A}y</tex>. Значит, <tex>\mathcal{A}x \ne \mathcal{A}y</tex>.

№30. Пространство R^n : покоординатная сходимость
утв покоординатная сходимость в <tex>\mathbb R^n</tex>
Условие
Пусть дана последовательность <tex>\overline x^{(m)} \in \mathbb R^n</tex>. Тогда <tex>\overline x^{(m)} \rightarrow \overline x</tex> в <tex>\mathbb R^n</tex> тогда и только тогда, когда для любого <tex>j \in 1,\dots,n</tex> последовательность <tex>\overline x_j^{(m)} \rightarrow \overline x_j</tex>

№31. Полнота R^n
Условие
Пространство <tex>\mathbb R^n</tex> с евклидовой нормой является B-пространством.
док-во
Надо установить, что из сходимости в себе следует существование предела по норме <tex>\mathbb R^n</tex>.
Если <tex>\|\overline x^{(m)} - \overline x^{(p)}\| \rightarrow 0</tex>, то для любого <tex>j</tex> выполняется <tex>|x_j^{(m)} - x_j^{(p)}| \rightarrow 0</tex>. По критерию Коши для числовых последовательностей из этого следует, что каждая из последовательностей <tex>x_j^{(m)}</tex> имеет предел, то есть, последовательность точек сходится покоординатно.
Но по доказанному ранее утверждению из покоординатной сходимости следует сходимость по норме, что и требовалось доказать.

№32. Критерий компактности в R^n
Условие
Множество <tex> X </tex> в <tex> R^n </tex> компактно тогда и только тогда, когда оно замкнуто и ограничено.

Ворпос №33. Непрерывные отображения в R^n: координатные функции, непрерывность линейных операторов
Л.о. непрерывен в X, если <tex>\lim \limits_{\mathcal {4} x \to 0} \mathcal{A} \left( x + \mathcal{4}x \right) = \mathcal{A} \left( x \right) </tex>
Также, непрерывность л.о. совпадает с его непрерывностью в нуле.
В <tex>\mathbb{R}^n</tex> сходимость покоординатная. <tex>\left | \sum \limits_{k=1}^m a_{jk} x_k \right | \le \sum \limits_{k=1}^m \left | a_{jk} \right | \left | x_k \right | \le \sqrt {\sum \limits_{k=1}^m \left | a_{jk} \right | ^ 2} \left \| \overline x \right \|</tex> (по неравенству Коши для сумм), таким образом, из <tex>\overline x \to 0</tex> неизбежно следует <tex>\sum \limits_{k=1}^m a_{jk} x_k \to 0</tex>
Утв Условие
<tex>\left \| \mathcal{A} \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2}</tex>
док-во
<tex>\overline y = \mathcal{A} \overline x, y_j = \sum \limits_{k=1}^n a_{jk} x_k</tex> — здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: <tex>\mathcal{A} \colon \mathbb{R}^n \to \mathbb{R}^m \longleftrightarrow \mathcal{A} = \left ( a_{jk} \right )</tex>, где <tex>j</tex> и <tex>k</tex> пробегают от <tex>1</tex> до <tex>n</tex> и <tex>m</tex> соответственно, а <tex>\mathcal{A} \overline x </tex> — результат действия л.о. <tex>\mathcal{A}</tex> на точку <tex>\overline x</tex> можно представить в виде произведения матрицы <tex>\mathcal{A}</tex> и столбца <tex>x</tex>.
В <tex>\mathbb{R}^n</tex> сходимость покоординатная. <tex>\left | \sum \limits_{k=1}^m a_{jk} x_k \right | \le \sum \limits_{k=1}^m \left | a_{jk} \right | \left | x_k \right | \le \sqrt {\sum \limits_{k=1}^m \left | a_{jk} \right | ^ 2} \left \| \overline x \right \|</tex> (по неравенству Коши для сумм), таким образом, из <tex>\overline x \to 0</tex> неизбежно следует <tex>\sum \limits_{k=1}^m a_{jk} x_k \to 0</tex>
Итак, линейный оператор, действующий из одного конечномерного пространства в другое, всегда непрерывен.

№34. Дифференциал отображения и частные производные, дифференцируемость суперпозиции
Пусть <tex>V_{r}(x)</tex> -шар в <tex>X, \quad \mathcal{F} : V_r(x) \to Y </tex>. <tex>\mathcal{F}</tex> - '''дифференцируема''' в точке <tex>x</tex>, если существует зависящий от <tex> x </tex> ограниченный линейный оператор <tex>\mathcal{A} : X \to Y</tex>, такой, что если <tex>\left \| \Delta x \right \| < r \quad (x + \Delta x \in V_r(x))</tex>, то:
<tex> \mathcal{F}(x + \Delta x) - \mathcal{F}(x) = \mathcal{A}(\Delta x) + \alpha(\Delta x) \left \| \Delta x \right \| </tex>,
причем <tex> \alpha(\Delta x) \rightarrow 0</tex> при <tex>\Delta x \rightarrow 0</tex>
Тогда <tex>\mathcal{A}(x) = \mathcal{F}'(x)</tex> - '''производная Фреше''' отображения <tex>\mathcal{F}</tex> в точке <tex>x</tex>.
Условие
Композиция дифференцируемых отображений дифференцируема. Производная Фреше равна композиции производных Фреше отображений.
Пусть <tex>\mathcal{F} : V_r(x) \to Y, y = \mathcal{F}(x), \mathcal{G} : V_{r_1}(y) \to Z \quad \exists \mathcal{F}'(x), \mathcal{G}'(y), \mathcal{T} = \mathcal{G} \circ \mathcal{F}</tex>, тогда <tex>\exists \mathcal{T}'(x) = \mathcal{G}'(y)\mathcal{F}'(x)</tex>
Данный предел называется '''частной производной''' первого порядка функции <tex>\mathcal{F}_i</tex> по переменной <tex>x_j</tex>.
<tex dpi = "140">A_{ij} = \lim\limits_{h \to 0} \frac{\mathcal{F}_i(\overline{x} + h\overline{e_j}) - \mathcal{F}_i(x)}{h} = \frac{\partial \mathcal{F}_i}{\partial x_j}</tex>

№35. Формула конечных приращений для функции многих переменных
<tex>\mathcal{F}_i(\overline{a}) - \mathcal{F}_i(\overline{b}) = \mathcal{F}'_i(\theta_i\overline{a}+(1-\theta_i)\overline{b})(\overline{a}-\overline{b})</tex>

№36. Неравенство Лагранжа
Условие
Пусть <tex>V</tex> - шар в <tex>\mathbb{R}^n, \quad \mathcal{F} : V \to \mathbb{R}^m, \quad \mathcal{F}</tex> -дифференцируема в каждой точке шара, тогда:<br>
<tex>\forall \overline{a},\overline{b} \in V : \left|\left| \mathcal{F}(\overline{b}) - \mathcal{F}(\overline{a})\right|\right| \le M\left|\left|\overline{b}-\overline{a}\right|\right|</tex>, где <tex>M = \sup\limits_{x \in [\overline{a},\overline{b}]} \left|\left|\mathcal{F}'(\overline{x})\right|\right| </tex>

№37. Достаточное условие дифференцируемости функции многих переменных
Условие
Пусть <tex>V(a) \subset \mathbb{R}^n</tex> <tex>y = f(x_1,...,x_n)</tex>, <tex>y : V \to \mathbb{R}</tex>
<tex>\forall x \in V: \ \exists \frac{\partial f}{\partial x_j}</tex>, каждая из которых, как функция <tex>n</tex> переменных, непрерывна в <tex>\overline{a} :\lim\limits_{\overline{x} \to \overline{a}}\frac{\partial f}{\partial x_j}(\overline{x})
= \frac{\partial f}{\partial x_j}(\overline{a})</tex>.
Тогда существует дифференциал этой функции в точке <tex>a</tex>.

№38. Дифференциалы высших порядков, теорема о смешанных производных
Определим частные производные и дифференциалы высших порядков.
<tex>\frac \partial{\partial x_j}</tex> — оператор, дифференцирующий функцию по <tex>x_j</tex>. Последовательное применение такого рода оператора даёт нам частные производные высших порядков.
Пусть <tex>z = f(x,y)</tex>. Тогда <tex>\frac \partial{\partial y} \left ( \frac {\partial f}{\partial x} \right )\stackrel{\mathrm{def}}{=}\frac {\partial^2 f}{\partial x \partial y}</tex> — частная производная второго порядка функции <tex>f</tex>. Дифференцирование осуществляется по переменной в знаменателе, слева направо.
Пусть в двумерном шаре у функции <tex>z = f(x,y)</tex> существуют смешанные производные второго порядка и каждая из них непрерывна в некоторой точке <tex>\overline a</tex> этого шара. Тогда в <tex>\overline a</tex>: <tex>\frac {\partial^2 f}{\partial x \partial y} (\overline a)=\frac {\partial^2 f}{\partial y \partial x}(\overline a)</tex>

№39. Формула Тейлора для функции многих переменных
<tex>f(\overline a+t\Delta \overline a)-f(\overline a)=\sum \limits_{k=1}^n \frac {d^{k}f(\overline a)}{k!}+\frac {d^{n+1}f(\overline a+\theta\Delta \overline a)}{(n+1)!}</tex>

№40. Безусловный экстремум: необходимое и достаточное условия
Опр: Пусть задан линейный функционал <tex>y = f(x_1, x_2, \dots, x_n) </tex> на <tex> V(\overline{a}) \subset R^n </tex>.
Если при <tex>\| \Delta \overline{a} \| \le \delta</tex>, <tex>\delta \approx 0 \Rightarrow f(\overline{a} + \Delta \overline{a}) \le f(\overline{a})</tex>, то <tex>a</tex> {{---}} '''точка локального максимума'''. Аналогично определяется точка локального минимума.
Аналог теоремы Ферма
Пусть <tex>f</tex> дифференцируема в точке локального экстремума <tex>a</tex>. Тогда <tex>\forall j = 1..n : \frac{\partial{f}}{\partial{x_j}} \overline{a} = 0</tex>

№41. Локальная теорема о неявном отображении
О неявном отображении
Условие
Пусть для <tex>f</tex> поставлена задача о неявном отображении, с начальными данными <tex>(x_0,y_0)</tex>. Известно, что в окрестности начальных данных<tex>f_{\overline y}'</tex> непрерывно зависит от <tex>\overline x,\overline y</tex> и непрерывно обратима в <tex>(x_0,y_0)</tex>. Тогда в некоторой окрестности начальных данных неявное отображение существует.
{{TODO | t = здесь надо еще написать что-нибудь типа определения неявного отображения

№42. Исследование функции многих переменных на условный экстремум
<tex>z=f(\overline x, \overline y),~\overline x=(x_1,\dots x_n),~\overline y=(y_1,\dots y_m)</tex>. Пусть заданы «уравнения связи» в количестве m:
<tex>\begin{cases} g_1(\overline x,\overline y)=0\\
g_2(\overline x,\overline y)=0\\
\dots\\
g_m(\overline x,\overline y)=0 \end{cases};</tex>

<tex>(\overline{x_0},\overline{y_0})</tex> — '''условный максимум''' функции <tex>f</tex>, если для всех <tex>\overline x \approx \overline{x_0},~\overline y \approx \overline{y_0}</tex> и <tex>(\overline x,\overline y)</tex>, удовлетворяющих уравнениям связи, выполняется неравенство <tex>f(\overline x,\overline y)\le f(\overline {x_0},\overline {y_0})</tex>. Если же <tex>f(\overline x,\overline y)\ge f(\overline {x_0},\overline {y_0}),~(\overline{x_0},\overline{y_0})</tex> — '''условный минимум'''.

№43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование
<wikitex>
Рассматриваем $ z = f(x, y) $, заданную на прямоугольнике $ a \le x \le b; \quad c \le y \le d $.
$ f $ непрерывна.
$ F(y) = \int\limits_a^b f(x, y) dx $ - интеграл, зависящий от параметра.
# $ F(y) $ - непрерывна на $ [c; d] $.
# Если существует непрерывная $ \frac{\partial f}{\partial y} $, то cуществует $ F'(y) = \int\limits_a^b \frac{\partial f}{\partial y} (x, y) dx $ - формула Лейбница.
# $ \int\limits_c^d F(y) dy = \int\limits_a^b dx \int\limits_c^d f(x, y) dy $ - формула читается справа налево, является повторным интегралом и по сути означает смену местами интегралов по двум переменным.
</wikitex>

№44. Равномерная сходимость несобственного интеграла, зависящего от параметра, признак Вейерштрасса
<wikitex>
Если выполняется следующее условие: $ f $ непрерывна, $ \forall \varepsilon > 0 : \exists A_0 : \forall A > A_0 , \forall y_0 \in [c; d] \Rightarrow | \int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $, то $ F(y) = \int\limits_a^{\infty} f(x, y) dx $ равномерно сходится на $ [c; d] $.
Вейерштрасс
Признак равномерной сходимости несобственных интегралов
Условие
Пусть $ |f(x, y) | \le g(x)\ \forall x \ge a, \forall y \in [c; d] $.
Пусть $ \int\limits_a^{\infty} g(x) dx $ - сходится. Тогда соответствующий интеграл равномерно сходится на $ [c; d] $.
</wikitex>

№45. Несобственный интеграл, зависящий от параметра: непрерывность
<wikitex>
$ F(y) = \int\limits_a^{\infty} f(x, y) dx \stackrel{?}{\Rightarrow} \Delta F(y) \xrightarrow[\Delta y \to 0]{} 0 $
</wikitex>

№46. Несобственный интеграл, зависящий от параметра: интегрирование
<wikitex>
$ \int\limits_c^d dy \int\limits_a^{\infty} f(x, y) dx = \int\limits_a^{\infty} dx \int\limits_c^d f(x,y) dy $
</wikitex>

№47. Несобственный интеграл, зависящий от параметра: дифференцирование
<wikitex>
$ \int\limits_a^{\infty} \frac{\partial f}{\partial y} (x, y) dx = \left( \int\limits_c^{y} g(t) dt \right)' = \left( \int\limits_a^{\infty} f(x, y) dx \right)' $
</wikitex>

№48. Понятие о Гамма и Бета функциях Эйлера
<wikitex>
$ B (a, b) = \int\limits_0^1 x^{a - 1} (1 - x)^{b - 1} dx $

$ \Gamma (a) = \int\limits_0^{\infty} x^{a - 1} e^{-x} dx $

В обоих случаях: интегралы, зависящие от параметра.

Легко понять, что $ B (a, b) $ Сходится при $ a, b > 0 $; $ \Gamma(a) $ сходится при $ a > 0 $.
</wikitex>

№49. Интеграл Римана по прямоугольнику: критерий существования
<tex>(\bar{x_i}, \bar{y_i}) \in \Pi_{ij}</tex>

<tex>\sigma(f, \tau) = \sum\limits_{i= 0}^{n - 1} \sum\limits_{j = 0}^{m - 1} f(\bar{x_i}, \bar{y_j}) \delta x_i \delta y_j</tex>

<tex>|\Pi_{ij}| = \delta x_i \delta y_j</tex>



Двойной интеграл <tex>\iint\limits_\Pi f = \iint\limits_\Pi f(x, y) dx dy = \lim\limits_{\operatorname{rang} \tau \to 0} \sigma(f, \tau)</tex>


<tex>\underline{s}(f, \tau) = \sum\limits_{i, j} m_{ij} \delta x_i \delta y_j</tex>,

<tex>\overline{s}(f, \tau) = \sum\limits_{i, j} M_{ij} \delta x_i \delta y_j</tex>

если <tex>f</tex> - непрерывна на <tex> \Pi </tex>, то существует <tex>\iint\limits_\Pi f</tex>(достаточное условие интегрируемости).

№50. Аддитивность интеграла по прямоугольнику
* <tex>\exists \iint\limits_\Pi f \iff \forall m \ \exists \int\limits_{\Pi_m} f</tex>
* <tex>\iint\limits_\Pi f = \sum\limits_{m = 1}^p \, \iint\limits_{\Pi_m} f</tex>

№51. Формула повторного интегрирования для прямоугольника
А ВАС ЭТО НЕ СПРОСЯТ

№52. Критерий квадрируемости фигуры по Жордану


<tex>E \subset \mathbb{R}^2</tex> '''квадрируема по Жордану''', если существует <tex>\iint\limits_E 1</tex>. Значение этого интеграла называется 'площадью фигуры'.


№53. Условие существования интеграла по квадрируемому компакту

Условие
Пусть <tex>E</tex> - квадрируемый компакт на плоскости, <tex>f</tex> непрерывна на <tex>E</tex>. Тогда существует <tex>\iint\limits_E f</tex>.


№54. Формула повторного интегрирования в общем случае
А ВАС ЭТО НЕ СПРОСЯТ

№55. Вычисление площади фигуры в криволинейных координатах
<tex>\int \int dx dy = \int \int | J(u, v) | du dv </tex>

№56. Замена переменных интегрирования в двойном интеграле
<tex>\mathcal{J}(u_1, \ldots, u_n) = \left|\begin{array}{ccc}\frac{\partial x_1}{\partial u_1} & \cdots & \frac{\partial x_1}{\partial u_n} \\\vdots & \ddots & \vdots \\\frac{\partial x_n}{\partial u_1} & \cdots & \frac{\partial x_n}{\partial u_n} \\\end{array}\right| \ne 0</tex>

<tex>\int\limits_E f(\bar x) d \bar x = \int\limits_{E'} f(\bar x(\bar u)) |\mathcal{J}(\bar u)| d \bar u</tex>

№57. Обзор формул для многократных интегралов
Анонимный участник

Навигация