Изменения

Перейти к: навигация, поиск
№41. Локальная теорема о неявном отображении
=== №41. Локальная теорема о неявном отображении===
Пусть <tex>\overline x \in V \subset \mathbb{R}^n, \overline y \in W \subset \mathbb{R}^m</tex>, тогда рассмотрим <tex>V\times W=\{(\overline x, \overline y) \in \mathbb R^{n+m},\overline x \in V, \overline y \in W\}</tex>.
 
<tex>f\colon V(\overline {x_0})\times W(\overline {y_0}) \to \mathbb{R}^m</tex>, <tex>f(x_0,y_0)=0^m</tex>. Существуют ли такие <tex>\delta_1,\delta_2>0</tex>, что для любого <tex>\overline x\in V_{\delta_1}(\overline{x_0})</tex> существует единственный <tex> \overline y\in W_{\delta_2}(\overline{y_0})\colon f(\overline x,\overline y)=0^m</tex>?
 
Если это так, то, в силу единственности y, определяем <tex>\overline y = \phi(\overline x)</tex> на <tex>V_{\delta_1}(\overline{x_0})</tex> так, чтобы <tex>f(\overline x,\phi(\overline x))=0^m</tex>. <tex>\phi</tex> — неявное отображение, определяется как <tex>f(\overline x,\overline y)=0^m,~(x_0,y_0)\colon f(\overline{x_0},\overline{y_0})=0^m</tex>
 
{{Теорема
|about=
|statement=
Пусть для <tex>f</tex> поставлена задача о неявном отображении, с начальными данными <tex>(x_0,y_0)</tex>. Известно, что в окрестности начальных данных<tex>f_{\overline y}'</tex> непрерывно зависит от <tex>\overline x,\overline y</tex> и непрерывно обратима в <tex>(x_0,y_0)</tex>. Тогда в некоторой окрестности начальных данных неявное отображение существует.
}}
 
{{TODO
| t = здесь надо еще написать что-нибудь типа определения неявного отображения
}}

Навигация