Изменения

Перейти к: навигация, поиск

Список заданий по ДМ

4244 байта добавлено, 00:05, 15 декабря 2014
Нет описания правки
# Найдите математическое ожидание числа инверсий в перестановке чисел от 1 до $n$
# Найдите математическое ожидание числа подъемов в перестановке чисел от 1 до $n$
# Предложите метод генерации случайной перестановки порядка $n$ с равновероятным распределением всех перестановок, если мы умеем генерировать равномерно распределенное целое число от 1 до $k$ для любых небольших $k$ ($k = O(n)$).
# Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[i], p[random(1..n)] )"
# Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[random(1..n)], p[random(1..n)] )"
# Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$)
# Докажите, что для монеты энтропия максимальна в случае честной монеты
# Докажите, что для n исходов энтропия максимальна если они все равновероятны
# Зафиксируйте ваш любимый язык программирования. Колмогоровской сложностью $K(x)$ для слова $x$ называется длина минимальной программы, которая выводит слово $x$. Докажите, что колмогоровская сложность не превышает $n H(x) + O(\log n)$, где $n$ - длина строки $x$, $H(x)$ - энтропия случайного источника с распределением соответствующим частотам встречания символов в $x$, константа в $O$, не зависит от слова $x$ (но может зависеть от выбранного языка программирования)
# Докажите, что для любого $c > 0$ найдется слово, для которого $K(x) < c H(x)$
# Пусть заданы полные системы событий $A = \{a_1, ..., a_n\}$ и $B = \{b_1, ..., b_m\}$. Определим условную энтропию $H(A | B)$ как $-\sum\limits_{i = 1}^m P(b_i) \sum\limits_{j = 1}^n P(a_j | b_i) \log P(a_j | b_i))$. Докажите, что $H(A | B) + H(B) = H(B | A) + H(A)$
# Что можно сказать про $H(A | B)$ если $a_i$ и $b_j$ независимы для любых $i$ и $j$?
# Что можно сказать про $H(A | A)$?
# Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую минимальное математическое ожидание числа бросков. Докажите оптимальность вашей схемы.
# Докажите, что математическое ожидание числа экспериментов при симуляции одного распределения другим асимптотически равно отношению энтропий распределений (считайте, что энтропия симулируемого распределения больше).
# Пусть $f$ и $g$ - непрерывные возрастающие функции, причем $\lim\limits_{x\to-\infty}f(x)=0$, $\lim\limits_{x\to-\infty}g(x)=0$, $\lim\limits_{x\to+\infty}f(x)=1$, $\lim\limits_{x\to+\infty}g(x)=1$, кроме того считайте, что вы можете вычислять $f(x)$, $g(x)$, $f^{-1}(x)$ и $g^{-1}(x)$. У вас есть случайная величина с функцией распределения $f(x)$. Как вам получить случайную величину с функцией распределения $g(x)$?
</wikitex>
Анонимный участник

Навигация