Изменения

Перейти к: навигация, поиск

Теорема Эдмондса-Лоулера

119 байт добавлено, 21:48, 14 июня 2011
Нет описания правки
|proof=
Докажем неравенство <tex>\max\limits_{I \in I_1 \cap I_2 } |I| \le \min\limits_{A \subseteq X} r_1(A) + r_2(X \setminus A)</tex> <br> <br> Выберем произвольные <tex>I \in I_1 \cap I_2</tex>, <tex>A \subseteq X</tex>, тогда <br> <br> <tex>|I| = |I \cap A| + |I \cap (X \setminus A)|</tex> <br> <br> <tex>I \cap A</tex> и <tex>I \cap (X \setminus A)</tex> - независимые в обоих матроидах (как подмножества независимового <tex>I</tex>), значит <br> <br> <tex>|I| = r_1(I \cap A) + r_2(I \cap (X \setminus A))</tex> <br> <br> Но <tex>r_1(I \cap A) \le r_1(A)</tex> и <tex>r_2(I \cap (X \setminus A)) \le r_2(X \setminus A)</tex>, значит <br> <br> <tex>|I| \le r_1(A) + r_2(X \setminus A)</tex> <br> <br> В силу произвольности <tex>I</tex> и <tex>A</tex> получаем <br> <br> 
<tex>\max\limits_{I \in I_1 \cap I_2 } |I| \le \min\limits_{A \subseteq X} r_1(A) + r_2(X \setminus A)</tex>
Обозначим <tex>S = \left\{x|I \cup \{x\} \in I_1\right\}</tex>, <tex>T = \left\{x|I \cup \{x\} \in I_2\right\}</tex>. Если <tex>S \cap T \ne \varnothing</tex>, добавим их пересечение в <tex>I</tex>.
[[Файл:El_graph2.png|thumb|140px|right|Граф замен, кратчайший путь]][[Файл:El_graph.png|thumb|140px|right|Завершение алгоритма]]<div>Построим [[Граф замен для двух матроидов|граф замен]] <tex>G_I</tex>. Добавим вершину <tex>z</tex>, не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества <tex>S</tex>. Пусть <tex>p</tex> — кратчайший путь из <tex>S</tex> в <tex>T</tex>, <tex>p_1</tex> — путь <tex>p</tex> с добавленным в начало ребром из <tex>z</tex>. По [[Лемма о единственном паросочетании в графе замен|лемме о единственном паросочетании]] и [[Лемма о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем|лемме о единственном паросочетании, индуцированном кратчайшем путём]] <tex>I \oplus p_1 \in I_2</tex>. Теперь добавим вершину <tex>u</tex>, не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества <tex>T</tex>. Тогда <tex>p_2</tex> (путь <tex>p</tex> с добавленным ребром в <tex>u</tex>) — кратчайший путь из <tex>S</tex> в <tex>u</tex>. Аналогично, <tex>I \oplus p_2 \in I_1</tex>. Отсюда следует, что <tex>I \oplus p \in I_1 \cap I_2</tex>, причём <tex>|I \oplus p| = |I| + 1</tex>.</div>
Будем таким образом увеличивать <tex>I</tex>, пока существует путь <tex>p</tex>. Рассмотрим момент, когда такого пути не нашлось.
53
правки

Навигация