Теорема Лаутемана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
==Формулировка==
 
 
Утверждение '''теоремы Лаутемана''' (Sipser–Lautemann theorem или Sipser–Gács–Lautemann theorem) состоит в том, что класс [[Класс BPP | BPP]] содержится в классах [[Классы Sigma_i и Pi_i|<math>\Sigma_2</math> и <math>\Pi_2</math>]] [[Полиномиальная иерархия | полиномиальной иерархии]].
 
Утверждение '''теоремы Лаутемана''' (Sipser–Lautemann theorem или Sipser–Gács–Lautemann theorem) состоит в том, что класс [[Класс BPP | BPP]] содержится в классах [[Классы Sigma_i и Pi_i|<math>\Sigma_2</math> и <math>\Pi_2</math>]] [[Полиномиальная иерархия | полиномиальной иерархии]].
  
==Доказательство==
+
==Теорема==
 +
{{ Теорема
 +
| statement = <tex>\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2</tex>
 +
| proof =  
  
 
Из того, что класс <tex>\mathrm{BPP}</tex> замкнут относительно дополнения и <tex>\mathrm{co}\Sigma_2 = \Pi_2</tex>, следует, что достаточно доказать включение <tex>\mathrm{BPP} \subset \Sigma_2</tex>.
 
Из того, что класс <tex>\mathrm{BPP}</tex> замкнут относительно дополнения и <tex>\mathrm{co}\Sigma_2 = \Pi_2</tex>, следует, что достаточно доказать включение <tex>\mathrm{BPP} \subset \Sigma_2</tex>.
Строка 34: Строка 36:
 
<tex>x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} M(x, y \oplus g_i)</tex>,
 
<tex>x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} M(x, y \oplus g_i)</tex>,
 
а, значит, <tex>L \in \Sigma_2</tex>, <tex>\mathrm{BPP} \subset \Sigma_2</tex> и <tex>\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2</tex>, что и требовалось доказать.
 
а, значит, <tex>L \in \Sigma_2</tex>, <tex>\mathrm{BPP} \subset \Sigma_2</tex> и <tex>\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2</tex>, что и требовалось доказать.
 +
}}

Версия 14:23, 3 июня 2012

Утверждение теоремы Лаутемана (Sipser–Lautemann theorem или Sipser–Gács–Lautemann theorem) состоит в том, что класс BPP содержится в классах [math]\Sigma_2[/math] и [math]\Pi_2[/math] полиномиальной иерархии.

Теорема

Теорема:
[math]\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2[/math]
Доказательство:
[math]\triangleright[/math]

Из того, что класс [math]\mathrm{BPP}[/math] замкнут относительно дополнения и [math]\mathrm{co}\Sigma_2 = \Pi_2[/math], следует, что достаточно доказать включение [math]\mathrm{BPP} \subset \Sigma_2[/math].

[math]\mathrm{BPP}[/math] можно определить как множество таких языков [math]L[/math], что [math]x \in L \Leftrightarrow \exists[/math] «много» вероятностных лент [math]y: R(x,y)[/math]. [math]\Sigma_2[/math] определяется как множество [math]\{ L \bigm| x \in L \Leftrightarrow \exists y \forall z R(x, y, z)\}[/math]. Таким образом, необходимо уметь записывать «[math]\exists[/math] много» с помощью кванторов [math]\exists\forall[/math].

Рассмотрим язык [math]G = \{0, 1\}^t[/math] для некоторого [math]t[/math]. Определим операцию [math]\oplus[/math] над словами из этого языка как побитовое исключающее или.

Назовем [math]X[/math], содержащееся в [math]G[/math], [math]k[/math]-большим, если существует набор [math]\{g_i\}_{i=1}^{k}[/math] такой, что [math]\bigcup\limits_{i=1}^{k} g_i \oplus X = G[/math].

Если [math]|X| \lt \frac{2^t}{k}[/math], то [math]X[/math] является [math]k[/math]-маленьким. Найдем достаточное условие, при котором [math]X[/math] является [math]k[/math]-большим.

Воспользуемся утверждением, что если вероятность [math]P(x \in A) \gt 0[/math], то существует [math]x[/math] из [math]A[/math]. Для этого выберем случайно набор [math]\{g_i\}_{i=1}^{k}[/math].

[math]P(\bigcup\limits_{i=1}^{k} g_i \oplus X \not = G) = P(\exists y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = P(\bigvee\limits_{i=1}^{2^t} y_i \not \in \bigcup\limits_{j=1}^{k} g_j \oplus X) \leqslant 2^t P(y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = 2^t P(\bigwedge\limits_{i=1}^{k} y \oplus g_i \not \in X) = 2^t \left(P(y \not \in X)\right)^k = 2^t \left(1 - \frac{|X|}{2^t}\right)^k[/math].

Если [math]2^t\left(1 - \frac{|X|}{2^t}\right)^k \lt 1[/math], то существует набор [math]\{g_i\}_{i=1}^{k}[/math], такой что [math]\bigcup\limits_{i=1}^{k} g_i \oplus X = G[/math], то есть [math]X[/math] [math]k[/math]-большое.

Рассмотрим язык [math]L \in \mathrm{BPP}[/math]. Существует вероятностная машина Тьюринга [math]M[/math], такая что [math]P(M(x) = [x \in L]) \geqslant 1 - \frac{1}{2^{p(n)}}[/math], где [math]p(n)[/math] некоторый полином, который будет определен позднее. Пусть [math]M[/math] использует [math]r(n)[/math] бит случайной ленты.

Зафиксируем [math]x[/math]. Возьмем [math]G = \{0, 1\}^{r(n)}[/math]. Рассмотрим множество [math]A_x = \{r \in G \bigm| M(x,r) = 1\}[/math]. Подберем теперь [math]p(n)[/math] и [math]k[/math] так, чтобы [math]x \in L \Leftrightarrow A_x[/math] [math]k[/math]-большое.

Если [math]x \in L[/math], то [math]P(A_x) = \frac{|A_x|}{2^{r(n)}} \geqslant 1 - \frac{1}{2^{p(n)}} \Rightarrow |A_x| \geqslant 2^{r(n)} \left( 1 - \frac{1}{2^{p(n)}} \right)[/math]. Потребуем [math]2^{r(n)} \left( 1 - \frac{|A_x|}{2^{r(n)}} \right)^k \leqslant 2^{r(n) - kp(n)} \lt 1[/math], чтобы [math]A_x[/math] было бы [math]k[/math]-большим.

Если [math]x \not \in L[/math], то [math]P(A_x) = \frac{|A_x|}{2^{r(n)}} \leqslant \frac{1}{2^{p(n)}} \Rightarrow |A_x| \leqslant 2^{r(n) - p(n)}[/math]. Потребуем [math]2^{r(n) - p(n)} \lt \frac{2^{r(n)}}{k}[/math], чтобы [math]A_x[/math] было бы [math]k[/math]-маленьким.

Выберем [math]p(n)[/math] так, чтобы [math]\frac{r(n)}{p(n)} \lt 2^{p(n)} - 2[/math] и [math]k = \lceil \frac{r(n)}{p(n)} \rceil + 1[/math]. Получаем [math]\frac{r(n)}{p(n)} \lt k \lt 2^{p(n)}[/math], то есть [math]x \in L \Leftrightarrow A_x[/math] [math]k[/math]-большое.

Таким образом, [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \in g_i \oplus A_x[/math], то есть [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \oplus g_i \in A_x[/math], то есть [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} M(x, y \oplus g_i)[/math],

а, значит, [math]L \in \Sigma_2[/math], [math]\mathrm{BPP} \subset \Sigma_2[/math] и [math]\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2[/math], что и требовалось доказать.
[math]\triangleleft[/math]