Теорема Менгера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 4: Строка 4:
 
Для доказательства мы будем пользоваться развитой раннее [[Определение сети, потока|теорией потоков]]. Кроме базовых определений нам потребуется понятие [[Дополняющая сеть, дополняющий путь| остаточной сети]] (иначе - дополнительной сети), а также [[Теорема_Форда-Фалкерсона|теорема Форда-Фалкерсона]].
 
Для доказательства мы будем пользоваться развитой раннее [[Определение сети, потока|теорией потоков]]. Кроме базовых определений нам потребуется понятие [[Дополняющая сеть, дополняющий путь| остаточной сети]] (иначе - дополнительной сети), а также [[Теорема_Форда-Фалкерсона|теорема Форда-Фалкерсона]].
  
Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:
+
Кроме того, потребуется лемма о целочисленности потока, которую сейчас и докажем:
 
{{Лемма
 
{{Лемма
 
|about=о целочисленности потока
 
|about=о целочисленности потока
Строка 72: Строка 72:
 
* Ловас Л., Пламмер М. '''Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии''' 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)
 
* Ловас Л., Пламмер М. '''Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии''' 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)
  
 +
[[Категория:Алгоритмы и структуры данных]]
 
[[Категория:Связность в графах]]
 
[[Категория:Связность в графах]]

Версия 03:18, 18 января 2012

Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как k-связность и количество непересекающихся путей относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ориентированном или неориентированном графе, и подразумеваем ли реберную k-связность и реберно непересекающиеся пути или же вершинную k-связность и вершинно непересекающиеся пути.

Подготовка к доказательству

Для доказательства мы будем пользоваться развитой раннее теорией потоков. Кроме базовых определений нам потребуется понятие остаточной сети (иначе - дополнительной сети), а также теорема Форда-Фалкерсона.

Кроме того, потребуется лемма о целочисленности потока, которую сейчас и докажем:

Лемма (о целочисленности потока):
      Если пропускные способности всех ребер целочисленные (сеть целочислена), то существует максимальный поток, целочисленный на каждом ребре.
Доказательство:
[math]\triangleright[/math]
Для доказательства достаточно рассмотреть алгоритм Форда-Фалкерсона для поиска максимального потока. Алгоритм делает примерно следующее (подробней - читай в соответствующей статье):
1. В начале берем какой-нибудь поток за начальный (например, нулевой).
2. В остаточной сети этого потока находим какой-нибудь путь из источника к стоку и увеличиваем поток на пропускную способность этого пути.
3. Повторяем пункт 2 до тех пор, пока находится хоть какой-то путь в остаточной сети.
То, что получится в конце, будет максимальным потоком. В случае целочисленной сети достаточно в качестве начального приближения взять нулевой поток, и не трудно видеть, что на каждой итерации (в том числе и последней) этот поток будет оставаться целочисленным, что и докажет требуемое.
[math]\triangleleft[/math]

И, наконец, сделаем немного более осознаным в общем-то и так интуитивно-понятное утверждение:

Утверждение:
Если в сети, где все пропускные способности ребер равны 1, существует целочисленный поток величиной [math]L[/math] то существует и [math]L[/math] реберно непересекающихся путей.
[math]\triangleright[/math]
Считаем, что [math]u[/math] - источник, [math]v[/math] - сток.
В начале поймем, что если поток не нулевой, то существует маршрут из [math]u[/math] в [math]v[/math] лежащий только на ребрах с потоком равным 1. В самом деле, если бы такого маршрута не существовало, то можно было бы выделить множество вершин до которых такие маршруты из вершины [math]u[/math] существуют, не включающее [math]v[/math], и по нему построить разрез. Поток через такой разрез, очевидно равен нулю, видим противоречие (т.к. [math]f(U,V)=|f|[/math], смотри первую лемму).
Итак, найдем какой-нибудь маршрут из [math]u[/math] в [math]v[/math] лежащий только на ребрах где поток равен 1. Удалив все ребра находящиеся в этом маршруте и оставив все остальное неизменным, придем к целочисленному потоку величиной [math]L-1[/math]. Ясно, что можно повторить тоже самое еще [math]L-1[/math] раз, и, таким образом мы выделим [math]L[/math] реберно непересекающихся маршрутов.
[math]\triangleleft[/math]

Теорема

Теперь сама теорема будет тривиальным следствием. В начале сформулируем и докажем реберную версию для случая ориентированного графа.

Теорема (Менгера о реберной двойственности в ориентированном графе):
Между вершинами [math]u[/math] и [math]v\; \exists L[/math] реберно непересекающихся путей [math]\Leftrightarrow[/math] после удаления [math]\forall L-1[/math] ребер [math]\exists[/math] путь из [math]u[/math] в [math]v[/math].
Доказательство:
[math]\triangleright[/math]
[math]\Leftarrow[/math]
Как и прежде, пусть [math]u[/math] - источник, а [math]v[/math] - сток.
Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток, целочисленный на каждом ребре (по лемме).
По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку. Удалим в этом разрезе [math]L-1[/math] ребер, и тогда раз [math]u[/math] и [math]v[/math] находятся в разных частях разреза, и [math]\exists[/math] путь из [math]u[/math] в [math]v[/math], то в разрезе останется хотя бы еще одно ребро. Значит пропускная способность разреза и вместе с ним величина потока [math]\geqslant L[/math]. А так как поток целочисленный, то это и означает, что [math]\exists L[/math] реберно непересекающихся путей.
[math]\Rightarrow[/math]
[math]\exists L[/math] реберно непересекающихся путей, а значит удалив любых [math]L-1[/math] ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает [math]\exists[/math] путь из [math]u[/math] в [math]v[/math].
[math]\triangleleft[/math]
Теорема (Менгера о вершинной двойственности в ориентированном графе):
Между вершинами [math]u[/math] и [math]v\; \exists L[/math] вершинно непересекающихся путей [math]\Leftrightarrow[/math] после удаления [math]\forall L-1[/math] вершин [math]\exists[/math] путь из [math]u[/math] в [math]v[/math].
Доказательство:
[math]\triangleright[/math]
Разобьем каждую вершину на две таким образом:
Menger-vertex.JPG
(все входящие ребра заходят в правую вершину, выходящие - из левой. между двумя новыми вершинами добавляем ребро)
Теперь задача практически сведена к первой теореме.
Необходимо лишь отметить, что если в старом графе пути вершинно пересекаются, то в новом графе пути необходимо реберно пересекаются и наоборот.
Кроме того, предложение "удалить в исходном графе [math]\forall L[/math] вершин" можно заменять на "в новом графе можно удалить [math]\forall L[/math] ребер" (достаточно выбирать вершины на концах этих ребер). Можно заменять и обратно, если учесть, что можно удалять ребра между парой вершин, которые раньше были одним целым.
[math]\triangleleft[/math]

Смотри также

Литература

  • Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)