Изменения

Перейти к: навигация, поиск

Теорема Менгера

300 байт убрано, 02:31, 27 октября 2011
Нет описания правки
:Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме).
:По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку. По условию «после удаления <tex>\forall L-1</tex> (и в частности тех, что находятся в нашем разрезе) ребер все еще будет <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>», значит пропускная способность разреза и вместе с ним величина потока <tex>\geqslant L</tex>. А так как поток целочисленный, то это и означает, что <tex>\exists L</tex> реберно непересекающихся путей (чуть позже дадим аккуратное объяснение этому).
:<tex>\Rightarrow</tex>
}}
// Логично переместить в раздел "подготовка к доказательству"
Небольшой комментарий к доказательству <tex>\Leftarrow</tex>:
//все остальные теоремы
 
==Примечание==
''Если в сети, где все пропускные способности равны 1 существует целочисленный поток величиной <tex>L</tex> то существует и <tex>L</tex> реберно непересекающихся путей.''
Поясним это: найдем какой-нибудь маршрут из <tex>u</tex> в <tex>v</tex> лежащий только на ребрах где поток равен 1. Такой маршут обязательно существует, пока величина потока больше 0 (иначе легко получается сразу получаем противоречие: рассмотрим множество вершин достижимых по ненулевым ребрам из стока и построим по нему разрез. Пропускная способность разреза равна 0, значит и поток должен быть не больше равен 0). Удалив все ребра находящиеся в этом маршруте и оставив все остальное неизменным, придем к потоку величиной <tex>L-1</tex>. Ясно, что можно повторить тоже самое еще <tex>L-1</tex> раз, и, таким образом мы неизбежно выделим <tex>L</tex> реберно непересекающихся маршрутов, что и требуется. //все остальные теоремы
==Смотри также==
223
правки

Навигация