Изменения

Перейти к: навигация, поиск
м
Cleanup
{{Теорема
|id = th1
|about=1
|statement=Пусть <tex>\lambda \leq 1</tex>. Тогда с вероятностью 1 процесс <tex>Y_t</tex> вырождается, т.е. <tex>P(\exists t: Y_t = 0) = 1</tex>.
}}
{{Теорема
|id = th2
|about=2
|statement=Пусть <tex>\lambda \ge 1</tex>. Пусть <tex>\gamma \in (0, 1)</tex> {{---}} единственное решение уравнения <tex>1 - \gamma = e^{-\lambda \gamma}</tex>. Тогда процесс <tex>Y_t</tex> вырождается с вероятностью <tex>1 - \gamma</tex>, т.е. <tex>P(\exists t: Y_t \leq 0) = 1 - \gamma</tex>.
}}
В данном случае ветвящийся процесс на графе нужно «запускать» не один раз, а многократно. Только так удается доказать, что а.п.н. хотя
бы в одном запуске возникнет гигантская компонента. Подробности можно найти в <ref name="trueproof" />, мы же лишь поясним, откуда в текущей ситуации появляется <tex>\gamma</tex> из формулировки [[#th2|предыдущей теоремы2]] и почему она совпадает с одноименной константой из той же теоремы.
Чтобы доказать, что есть гигантская компонента, необходимо, чтобы ветвящийся процесс на графе не вырождался даже
Если <tex>\alpha > 1 - e^{-c\alpha}</tex>, то вероятность, напротив, будет стремиться к единице.
Таким образом, критическое значение <tex>\alpha</tex>, вплоть до которого есть именно стремление к нулю, {{---}} это решение уравнения <tex>\alpha = 1 - e^{-c\alpha}</tex> или, что равносильно, <tex>1 - \alpha = e^{-c\alpha}</tex>. А это и есть уравнение из [[#th2|предыдущей теоремы2]], если заменить <tex>\lambda</tex> на <tex>c</tex>.
}}
436
правок

Навигация