Изменения

Перейти к: навигация, поиск
Обход случайного графа
== Теорема о гигантской компоненте ==
Перед формулировкой основной теоремы данного раздела, дадим определение некоторых понятий, которые будут использованы в дальнейшем, а также приведем необходимые далее утверждения.
{{Определение
|definition='''Простейший ветвящийся процесс.''' Пусть <tex>Z_1,\dotsc Z_n,\dotsc </tex> {{---}} независимые пуассоновские величины<ref>https://ru.wikipedia.org/wiki/Распределение_Пуассона</ref> с одним и тем же [[Математическое ожидание случайной величины | математическим ожиданием]] <tex>\lambda</tex>. Положим
'''Случай <tex>c < 1</tex>'''.
Положим <tex>t_0=[\beta \ln n]</tex>, где <tex>\beta</tex> {{---}} константа, которая будет подобрана далее. Нам хочется доказать, что с большой вероятностью каждая из компонент случайного графа имеет размер , меньший или равный <tex>\le t_0</tex>.
Но размер компоненты {{---}} это момент вырождения процесса <tex>Y_t</tex> на случайном графе. Значит, интересующее нас утверждение можно записать в следующем виде: <tex>P_{n, p}(\exists v_1 : Y_{t_0} > 0) \rightarrow 0, n \rightarrow \infty</tex>
Поскольку <tex>P_{n, p}(\exists v_1 : Y_{t_0} > 0) \le nP_{n, p}(Y_{t_0} \ge 0)</tex>, достаточно найти такое <tex>\beta</tex>, при котором <tex>P_{n, p}(Y_{t_0} > 0) = o\left(\frac{1}{n}\right).</tex><br>
== Обход случайного графа ==
Приведем ряд утверждений, которые будут использованы а в дальнейшем. Их доказательство, а также более детальный рассказ можно найти здесь<ref name="chap4">Blum A. Random Graphs // CS 598 Topics in Algorithms (UIUC), 2015. URL: https://www.cs.cmu.edu/~avrim/598/chap4only.pdf</ref>.
{{Лемма
|id=lemma1
Анонимный участник

Навигация