Изменения

Перейти к: навигация, поиск

Триангуляция Делоне

29 289 байт добавлено, 19:17, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{ptready}}
{{nohate}}
== Определение ==
{{Определение
|definition=
'''Подразбиение Делонемножества точек''' — такое разбиение плоскости выпуклой оболочки множества точек на множество выпуклых фигур, что в окружности, описанной вокруг любой из фигур, не находится никаких точекиз множества.
}}
{{Определение
|definition=
'''Триангуляция Делонемножества точек''' — триангуляция, являющаяся подразбиением Делоне.
}}
== Существование триангуляции Делоне ==
{{Лемма
|about=1
|statement=
Окружность, спроецированная на параболоид, находится в одной плоскости. Все точки, лежащие внутри окружности, будут лежать под этой плоскостью. Точки, лежащие вне окружности, будут лежать над плоскостью.
|proof=
{{TODO|tРассмотрим окружность с центром в точке <tex>(a, b)</tex> радиуса <tex>r</tex>, она описывается уравнением: <tex>(x - a)^2 + (y - b)^2 =Тут будет какойr^2</tex>. Раскрывая скобки в уравнении окружности, получим <tex>x^2 - 2ax + a^2 + y^2 -то определитель спроецированных на 2by + b^2 = r^2</tex> Рассмотрим параболоид точек}}, пускай его уравнение имеет вид <tex>x^2 + y^2 = Cz</tex>.\begin{vmatrix}При проецировании, для проекции окружности на параболоид верны оба уравнения: и окружности, и параболоида, поэтому в уравнение окружности вместо <tex>x^2 + y^2</tex> можно подставить <tex>Cz</tex>, получится <tex>(-2a)x & + (-2b)y \\+ Cz + (a^2 + b^2 - r^2) = 0</tex>z & v\end{vmatrix}Заметим, что получившееся уравнение является уравнением плоскости: <tex>Ax + By + Cz + D = 0</tex>, то есть, все точки проекции окружности будут лежать в одной плоскости. Рассмотрим любую точку внутри данной окружности. Через нее можно провести окружность с центром в точке <tex>(a, b)</tex>и радиусом <tex>r' < r</tex>, тогда плоскость, проходящая через проекцию этой окружности на параболоид будет иметь уравнение <tex>Ax + By + Cz + D' = 0</tex>, то есть, обе плоскости будут параллельны и вторая плоскость будет лежать под плоскостью окружности (поскольку <tex>r' < r</tex>, то <tex>D' = (a^2 + b^2 - r'^2) > (a^2 + b^2 - r^2) = D</tex>). Аналогично доказывается, что точки лежащие вне окружности лежат над плоскостью. 
}}
{{Теорема
Подразбиение Делоне существует, причём для каждого набора точек оно единственно.
|proof=
Спроецируем все точки на параболоид и построим выпуклую оболочку.  Все грани выпуклой оболочки окажутся внутри параболоида из-за его выпуклости. При этом точки лежат на параболоиде. Поэтому не найдётся точек, которые будут лежать за гранями выпуклой оболочки. То есть все точки, спроецированные на параболоид, будут принадлежать выпуклой оболочке. По лемме 1 очевидно, что внутри окружностей, описанных вокруг проекций граней выпуклой оболочки, не будет лежать никаких точек. Значит, проекции граней — фигуры подразбиения Делоне. Значит, такое подразбиение существует.
Из единственности выпуклой оболочки следует, что такое подразбиение единственно.
}}
== Некоторые упоительные факты Критерий Делоне для рёбер =={{TODO|t=Раскидать это всё в те разделы, где это нужно}}
{{Определение
|definition='''Критерий Делоне для ребра''' : на ребре можно построить такую окружность, что внутри неё не будет лежать никаких точек.
}}
{{Лемма
|about=2|statement=Триангуляции Делоне принадлежат те и только те рёбра (с поправкой на точки, лежащие на одной окружности), которые удовлетворяют критерию Делоне.
|proof=
{{TODO[[Файл:Good edges.png|t=А 400px|thumb|right|Для рёбер AB и CD выполняется критерий Делоне, на них построены окружности]]То, что для рёбер, принадлежащих триангуляции Делоне, выполняется критерий Делоне для рёбер, очевидно (вокруг каждого ребра можно описать окружность, проходящую через противолежащую ему точку в смежном треугольнике, причём в окружности не будет никаких точек по критерию Делоне). Докажем, что если для ребра выполняется критерий Делоне, то оно принадлежит триангуляции Делоне. Предположим, что это ребро (назовём его <tex>AB</tex>) не принадлежит триангуляции Делоне. Тогда существует пересекающее его ребро <tex>CD</tex>, принадлежащее триангуляции. Рассмотрим четырёхугольник <tex>ACBD</tex>. Точки <tex>C</tex> и <tex>D</tex> лежат вне окружности, построенной на <tex>AB</tex> как это вообще на хорде, поэтому сумма углов <tex>C</tex> и <tex>D</tex> меньше 180°. Аналогичным образом доказывается?}}, что сумма углов <tex>A</tex> и <tex>B</tex> тоже меньше 180°. Значит, сумма углов четырёхугольника <tex>ACBD</tex> меньше 360°, что невозможно. Противоречие. Значит, ребро <tex>AB</tex> принадлежит триангуляции Делоне.
}}
 
== Локальный критерий Делоне ==
{{Определение
|definition=Ребро назовём '''хорошимЛокальный критерий Делоне для ребра''', если : для пары треугольников, которым принадлежит это ребро, выполняется критерий Делоне (то есть вершина, противолежащая ребру в одном треугольнике, не лежит в окружности, описанной вокруг другого, и наоборот).
}}
Будем называть '''хорошими''' те рёбра, для которых выполняется локальный критерий Делоне.
{{Лемма
|about=3
|id=fliplemma
|statement=
Из двух рёбер, которые можно провести для пары треугольников, как минимум одно хорошее.
|proof=
Спроецируем четыре точки на параболоид[[Файл:Bad edges. Очевидноpng|400px|thumb|right|Рёбра AB и BC плохие]]Предположим, что по ним можно построить это не так, то есть оба ребра (назовём их <tex>AB</tex> и <tex>CD</tex>) плохие. Рассмотрим четырёхугольник {{Acronym|двумя способами: в первом случае он будет «вогнутым»<tex>ACBD</tex> и окружность, во втором — «выпуклым»|Если все четыре точки лежат на одной описанную вокруг треугольника <tex>ABC</tex>. Точка <tex>D</tex> лежит внутри этой окружности, то оба ребра будут хорошимизначит, сумма углов <tex>C</tex> и <tex>D</tex> больше 180°. Аналогично доказывается, так как четырёхугольник можно будет построить только один}}что сумма углов <tex>A</tex> и <tex>B</tex> больше 180°. По доказанному выше факту про окружностьЗначит, спроецированную на параболоидсумма углов четырёхугольника <tex>ACBD</tex> больше 360°, выпуклое ребро будет хорошимчто невозможно.
}}
{{Лемма
|about=4
|statement=
Если все рёбра хорошиедля всех рёбер выполняется локальный критерий Делоне, то выполняется и триангуляция хорошаяглобальный критерий Делоне.
|proof=
Ну предположим[[Файл:Bad triangle.png|400px|thumb|right|Все рёбра треугольника хорошие, но описанная окружность содержит точки]]Предположим, что это не так, то есть все рёбра хорошие, но существует треугольниксуществуют треугольники, описанная окружность которого содержит которых содержат какие-либо точки триангуляции. Тогда очевидноВозьмём какую-либо конфликтную точку <tex>E</tex>. Рассмотрим такой треугольник <tex>ABC</tex> из тех, в описанную окружность которых попадает <tex>E</tex>, что угол <tex>BEC</tex> максимален, если <tex>BC</tex> — ближайшая к точке <tex>E</tex> сторона. Пусть треугольник <tex>BDC</tex> — смежный с <tex>ABC</tex>. Докажем, что одно из рёбер этого точка <tex>E</tex> лежит в окружности, описанной вокруг <tex>BDC</tex>. Предположим, что это не так. Посмотрим на окружность, описанную вокруг треугольника <tex>ABC</tex>: <tex>\angle BAC + \angle BEC > 180^\circ</tex> и <tex>\angle BAC + \angle BDC < 180^\circ</tex>. Если точка <tex>E</tex> не лежит в окружности, описанной вокруг треугольника <tex>BDC</tex>, то <tex>\angle BEC < \angle BDC</tex>, что противоречит предыдущим двум неравенствам. Очевидно, что угол <tex>BED</tex> больше, чем угол <tex>BEC</tex>. При этом точка <tex>E</tex> лежит в окружности, описанной вокруг <tex>BDC</tex>. Значит, при выборе треугольника окажется плохимнужно было взять не <tex>ABC</tex>, а <tex>BDC</tex>. Противоречие.
}}
 
== Динамическая триангуляция ==
{{Определение
|definition=
Для пары Рассмотрим пару смежных треугольников . Рёбра этих треугольников образуют четырёхугольник с проведённой в нём диагональю. Операция замены этой диагонали на другую называется '''flip''' ('''флип''').}}[[Файл:Flip.png|400px|thumb|right|Красное ребро убирание смежного до флипа, синее — после]]Из [[#fliplemma|леммы 3]] следует, что если ребро плохое, то флип сделает его хорошим.{{Лемма|about=5|statement=Флип плохого ребра уменьшает разность объёмов параболоида и проведение другоготриангуляции, спроецированной на него.|id=volumelemma|proof=Рассмотрим два таких смежных треугольника, что ребро между ними является плохим. Спроецируем их на параболоид. Четыре точки, принадлежащие смежным треугольникам, при проекции на параболоид образуют тетраэдр. Проведём через какой-нибудь из двух треугольников плоскость. Вершина, противолежащая основанию тетраэдра, являющегося этим треугольником, лежит ниже этой плоскости (так как не выполняется локальный критерий Делоне), то есть тетраэдр лежит ниже тела, образующегося при проекции всей триангуляции на параболоид. После флипа станет выполняться локальный критерий Делоне, то есть тело станет включать в себя тетраэдр. Поэтому после флипа плохого ребра объём тела увеличится на объём этого тетраэдра.
}}
Из первой леммы следует, что, если ребро плохое, то флип сделает его хорошим.
{{Лемма
|about=6
|statement=
Флипами можно достичь хорошей триангуляции за конечное время.
|proof=
ОчевидноВсего триангуляций заданного множества точек конечное число, и среди них есть триангуляция Делоне. Последовательность флипов плохих рёбер триангуляции образует такую последовательность триангуляций, потому что каждый флип уменьшает разность объёмов параболоида и триангуляции, спроецированной на неготриангуляции убывает ([[#volumelemma|по лемме 5]]). Эта последовательность конечна (при этом последней в последовательности является триангуляция Делоне), значит, число флипов, требуемых для достижения триангуляции Делоне, тоже конечно.
}}
{{Лемма
|about=7
|statement=
Если в триангуляцию Делоне вставить точку в некоторый треугольник и соединить его вершины с этой точкой, то получившиеся рёбра будут хорошими.
|id=newedgeslemma
|proof=
[[Файл:Good edge.png|400px|thumb|right|Точка V вставлена в треугольник ABC]]
Предположим, точка была вставлена не на ребро. Рассмотрим любое из рёбер — пусть это будет ребро <tex>VC</tex>. Проведём окружность, описывающую треугольник <tex>ABC</tex>. По критерию Делоне в ней не будет никаких точек триангуляции. На ребре <tex>VC</tex> можно построить окружность, изнутри касающуюся окружности, описанной вокруг треугольника. В ней тоже нет никаких точек. Значит, для <tex>VC</tex> выполняется критерий Делоне для рёбер, то есть, оно хорошее.
== Динамическая триангуляция ==Случай, когда точка вставляется на ребро, рассматривается аналогично.}}
=== Вставка точки ===
==== Вставка точки, лежащей внутри триангуляции ====
{{TODO[[Файл:Insert in triangle.png|t=Надо бы вставить сюда картинки}}200px|thumb|left|Вставка в треугольник]][[Файл:Insert on edge.png|200px|thumb|right|Вставка на ребро]] Для начала локализуемся: поймём, в каком фейсе лежит точка (или на каком ребре).
Для начала локализуемся: поймёмЕсли точка лежит внутри фейса, добавляем три ребра, сам фейс превращаем в каком фейсе один из новых смежных с вставляемой точкой и добавялем ещё два фейса. Если же точка лежит точка (или на каком ребре). Вставляем, два смежных с ребром фейса превращаем в два новых, добавляем ещё два, а так же превращаем ребро, на которое вставляется точка, в ребро, которое заканчивается в этой точке, и вставляем три новых.  Итого у нас появилось несколько новых рёбер. Они все хорошие ({{TODOпо [[#newedgeslemma|t=Доказать, почему}}лемме 7]]), плохими могут оказаться только рёбра, противолежащие вставленной точке. Флипаем рёбра, пока триангуляция не станет хорошей.
Среднее число флипов — <tex>O(1)</tex> ({{TODO|t=Доказать, почему}}). Поэтому время вставки целиком зависит от времени локализации.
==== Вставка точки, лежащей снаружи триангуляции ====
Представим, что вне триангуляции — бесконечные треугольники, основания которых — рёбра выпуклой оболочки триангуляции, а противолежащая ребру вершина — это бесконечно удалённая точка. Тогда понятно, что вставка точки, не лежащей в триангуляции, сведётся к вставке точки внутрь триангуляции, если мы научимся обрабатывать бесконечные фейсы.
Бесконечно удалённая точка имеет координаты <tex>(0,0,1,0)</tex> (последняя координата — однородная). Тогда проверка на то, является ли хорошим ребро, инцидентное бесконечно удалённой точке, упрощается:<tex>\begin{vmatrix}a_x & a_y & a_x^2 + a_y^2 & 1 \\b_x & b_y & b_y^2 + b_y^2 & 1 \\c_x & c_y & c_x^2 + c_y^2 & 1 \\0 & 0 & 1 & 0\end{vmatrix} = \begin{vmatrix}a_x & a_y & 1 \\b_x & b_y & 1 \\c_x & c_y & 1\end{vmatrix}</tex>, то есть достаточно проверить поворот трёх остальных точек образованного двумя бесконечными треугольниками четырёхугольника. Проверка, принадлежит ли точка бесконечному треугольнику, тоже проста: нужно, чтобы из точки было видно ребро, противолежащее бесконечно удалённой точке, в бесконечном треугольнике. Это проверяется предикатом поворота. ==== Время работы ===={{TODOЛемма|tabout=Написать про бесконечно удалённую 8|statement=При вставке точки будут флипаться только рёбра, противолежащие вставленной точке.|proof=[[Файл:Flip edges.png|400px|thumb|right|V — вставленная точка, ребро AC — плохое]]Доказательство по индукции. База. По [[#newedgeslemma|лемме 7]] изначально не будут флипаться новые рёбра, инцидентные точке, то есть плохими могут оказаться только рёбра, противолежащие точке. Переход. Рассмотрим, что произойдёт с противолежащим точке <tex>V</tex> ребром <tex>AC</tex> после флипа, если оно плохое. До вставки точки <tex>V</tex> для триангуляции выполнялся глобальный критерий Делоне, поэтому в окружности, описанной вокруг треугольника <tex>ACD</tex>, не будет лежать никаких точек, кроме точки <tex>V</tex>. Можно построить окружность, касающуюся её изнутри в точке <tex>D</tex> и проходящую через точку <tex>V</tex>. В ней тоже не окажется никаких точек, так как она касается изнутри. Значит, для ребра <tex>VD</tex> выполняется критерий Делоне. Значит, после флипа ребро <tex>AC</tex> уже не будет флипаться. Так как для рёбер <tex>AV</tex> и <tex>CV</tex> выполняется критерий Делоне, то плохими после флипа могут стать только рёбра <tex>AD</tex> и <tex>CD</tex> — то есть рёбра, противолежащие точке <tex>V</tex>.}}{{Лемма|about=9|statement=Средняя степень вершины после вставки её в триангуляцию Делоне равна <tex>O(1)</tex>.|id=deglemma|proof=Предположим, что мы вставляем <tex>i+1</tex>-ую точкуиз последовательности из <tex>n</tex> точек. Рассмотрим все перестановки из этих <tex>i+1</tex> точек, означающие порядок вставки этих точек. Всего таких перестановок <tex>(i+1)!</tex>. Тогда средняя степень последней вершины среди перестановок равна: <tex>E(\operatorname{deg}(v_{i+1}))=\frac {\sum_{p=perm(v_1, v_2, ..., v_{i+1})} \operatorname{deg} (p[i+1])} {(i+1)!}</tex> Каждая из <tex>i+1</tex> вершин побывает последней ровно <tex>i!</tex> раз, поэтому: <tex>E(\operatorname{deg} (v_{i+1}))=\frac {\sum_{k=0}^{i} i! \operatorname{deg} (v_k)} {(i+1)!} = \frac {\sum_{k=0}^i \operatorname{deg}(v_k)} {i+1} = \frac {O(i+1)} {i+1} = O(1)</tex>}}{{Теорема|statement=При вставке точки в триангуляцию Делоне в среднем придётся сделать <tex>O(1)</tex> флипов.|id=flipnumberlemma|proof=Все флипнутые рёбра окажутся инцидентными вставленной точке (по лемме 8), а [[#deglemma|степень вершины — <tex>O(1)</tex> (по лемме 9)]]. Поэтому будет сделано <tex>O(1)</tex> флипов.}}Так как среднее число флипов — <tex>O(1)</tex>, то время вставки целиком зависит от времени локализации.
=== Удаление точки ===
==== Алгоритм ====При удалении точки получится {{Acronym|звёздный многоугольник, который можно затриангулировать за линию|Почему на эту тему нет конспекта? Я не собираюсь тут это доказыватьОбщеизвестный факт}}. Дальше При этом все рёбра, полученные в результате триангуляции звёздного многоугольника, могут оказаться плохими, поэтому необходимо пройтись по традиции флипаем всёним и пофлипать, что могло стать плохимесли нужно.==== Время работы ===={{Acronym|Средняя степень вершины в триангуляции — <tex>O(1)</tex>|Общеизвестный факт}}, поэтому триангуляция звёздного многоугольника будет тоже за <tex>O(1)</tex>. Новых рёбер получится <tex>O(1)</tex>, пока не получим хорошую триангуляциюпроверить их на локальный критерий Делоне и пофлипать тоже можно за <tex>O(1)</tex>. Итого удаление точки работает за <tex>O(1)</tex>.
Средняя степень вершины в триангуляции — <tex>O(1)</tex> ({{TODO|t=Почему?}})= Локализационная структура ===== Cтруктура ===Локализационная структура состоит из нескольких уровней, поэтому где каждый уровень — это триангуляция звёздного многоугольника будет тоже за Делоне. На нижнем уровне содержатся все точки. Каждая точка с вероятностью <tex>O(1)p</tex>. С флипами всё тожепроходит на следующий уровень (причём если точка — единственная на последнем уровне, в общем-то, хорошо. Итого удаление точки работает за <tex>O(1дальше она не пройдёт)</tex>.
== Локализационная структура ===== Сама структура ===В общем-то, довольно стандартная схема для рандомизированных структурУровни связаны между собой следующим образом: на нижнем уровне содержатся все точки; <tex>i</tex> каждая точка с вероятностью p проходит содержит указатель на себя же на следующий уровеньуровне <tex>i-1</tex>.=== Локализация Алгоритм локализации ===
Как происходит локализация: нам дают точку <tex>v_{i+1}</tex>, которая на предыдущем уровне была ближайшей к точке <tex>q</tex>, которую мы локализуем. Нужно получить следующую точку <tex>v_i</tex>, которая будет ближайшей уже на этом уровне. Делается это следующим образом:
* Находим, в каком из треугольников, смежных с <tex>v_{i+1}</tex>, лежит отрезок <tex>v_{i+1} q</tex>
* Находим, какие рёбра треугольников пересекает <tex>v_{i+1} q</tex>, в итоге находим треугольник, в котором лежит <tex>q</tex>
* Находим ближайшую к <tex>q</tex> точку. Первым кандидатом на то, чтобы быть ближайшей точкой, становится ближайшая к <tex>q</tex> вершина найденного в предыдущем пункте треугольника. Для каждого кандидата нужно просмотреть смежные вершины в поиске точки, которая находится ближе к <tex>q</tex> — эта точка становится следующим кандидатом. Если же среди соседей точки не нашлось более близких, значит, эта точка и есть ближайшая.
=== Корректность алгоритма ===
{{Теорема
|statement=Данный алгоритм найдёт ближайшую точку.
|proof=
[[Файл:Delaunay localization.png|400px|thumb|right|Ребро vv' должно принадлежать триангуляции]]
Предположим, что это не так. Назовём локализуемую точку <tex>q</tex>, а последнего кандидата на то, чтобы быть ближайшей точкой — <tex>v</tex>. Раз эта точка на самом деле не ближайшая, то в окружности, проходящей через <tex>v</tex>, с центром в точке <tex>q</tex> найдутся ещё какие-то точки, не смежные с <tex>v</tex>. Проведём через каждую из них окружность, касающуюся изнутри в точке <tex>v</tex> изначальную окружность. Рассмотрим точку <tex>v'</tex>, через которую проходит наименьшая окружность из построенных. В этой окружности не будет лежать никаких точек, так как мы взяли наименьшую. Значит, ребро <tex>vv'</tex> удовлетворяет критерию Делоне и должно являться ребром триангуляции (по лемме 2), но по предположению этого ребра нет. Значит, предположение неверно.
}}
=== Время работы, требуемая память ===
==== Память ====
{{Лемма
|about=10
|statement=
Матожидание числа уровней в локализационной структуре — <tex>O(\log n)</tex>.
|id=levelslemma
|proof=
Для оценки матожидания посчитаем вероятность того, что количество уровней <tex>h</tex> равно <tex>k</tex> при вероятности пройти на следующий уровень равной <tex>p</tex>.
 
<tex>p(h \leq k) = (1 - p^{k + 1})^n</tex>, потому что вероятность того, что точка дойдёт до уровня <tex>k + 1</tex>, равна <tex>p^{k + 1}</tex>.
 
<tex>p(h \geq k) = (1 - (1 - p^k)^n)</tex>, потому что вероятность того, что точка не дойдёт до уровня <tex>k</tex>, равна <tex>1 - p^k</tex>.
 
<tex>p(h = k) = 1 - p(h > k) - p(h < k) = 1 - (1 - (1 - p^{k + 1})^n) - (1 - p^{k})^n = (1 - p^{k + 1})^n - (1 - p^k)^n \leq 1 - (1 - p^k)^n \leq np^k</tex>
 
<tex>E(h) = \sum\limits_{k = 1}^{\infty} k \cdot p(h = k) = p(1) \cdot 1 + \dots + p(\log_{1/p} n) \cdot \log_{1/p} n + \sum\limits_{k = \log_{1/p} n + 1}^{\infty} k \cdot p(k)</tex>
 
Оценим первую сумму:
 
<tex>p(1) \cdot 1 + \dots + p(\log_{1/p} n) \cdot \log_{1/p} n \leq p(1) \cdot \log_{1/p} n + \dots + p(\log_{1/p} n) \cdot \log_{1/p} n = O(\log(n))</tex>, поскольку сумма этих вероятностей не превосходит единицу.
 
Оценим вторую сумму:
 
<tex>\sum\limits_{k = \log_{1/p} n + 1}^{\infty} k \cdot p(k) \leq \sum\limits_{k = \log_{1/p} n}^{\infty} k \cdot n p^k = n \cdot \sum\limits_{k = \log_{1/p} n}^{\infty} k \cdot p^k</tex>
 
Рассмотрим эту сумму:
 
<tex>\sum\limits_{k = \log_{1/p} n}^{\infty} k \cdot p^k = p^{\log_{1/p} n} \cdot \sum\limits_{k = 0}^{\infty} (k + \log_{1/p} n) \cdot p^k = p^{\log_{1/p} n} \cdot (\sum\limits_{k = 0}^{\infty} (k p^k) + \log_{1/p} n \cdot \sum\limits_{k = 0}^{\infty} (p^k)) = p^{\log_{1/p} n} \cdot (O(1) + \log_{1/p} n \cdot O(1)) = 1/n \cdot O(\log(n))</tex>
 
Суммируя всё вышесказанное, получаем, что <tex>O(\log(n))</tex>.
}}
{{Теорема
|statement=Данный алгоритм найдёт Локализационная структура занимает <tex>O(n)</tex> памяти.|proof=Триангуляция для <tex>n</tex> точек занимает <tex>O(n)</tex> памяти. На нулевом уровне <tex>n</tex> точек. На уровне <tex>k</tex> точек <tex>m_k=p \cdot m_{k-1}</tex>. Получим геометрическую прогрессию, сумма которой равна <tex>O(n)</tex>.}} ==== Время работы ===={{Лемма|about=11|statement=Каждая точка на плоскости может являться ближайшей для не более чем шести точек.|id=closestlemma|proof=[[Файл:Closest deg.png|400px|thumb|right|Точка ''u'' является ближайшей для семи точек]] Предположим, что это не так. Пусть некоторая точка <tex>u</tex> является ближайшей для семи точек. Соединим эти семь точек с точкой <tex>u</tex> отрезками и рассмотрим минимальный из углов, который образуют проведённые отрезки <tex>vu</tex> и <tex>wu</tex>. Этот угол <tex>\alpha</tex> меньше 60° (иначе все семь углов больше либо равны 60° и их сумма больше 360°). Так как точка <tex>u</tex> ближайшая для точек <tex>v</tex> и <tex>w</tex>, то <tex>vw</tex> — наибольшая сторона в треугольнике <tex>vwu</tex>. В треугольнике наибольшая сторона лежит напротив наибольшего угла. Но напротив стороны <tex>vw</tex> лежит угол меньше 60°, значит, сумма углов треугольника меньше 180°. Противоречие. Значит, предположение неверно.}}{{Лемма|about=12|statement=Для заданной точки <tex>q</tex> на <tex>k</tex>-ом уровне средняя степень ближайшей на <tex>k+1</tex>-ом уровне вершины равна <tex>O(1)</tex>.|id=nearestdegreelemma|proof= ''Функция <tex>nn</tex> принимает точку и множество и возвращает ближайшего соседа заданной точки из заданного множества.'' Рассмотрим некоторый уровень <tex>S_k</tex>. Определим множество <tex>R_k=S_k\cup\{q\}</tex>. Рассмотрим все возможные подмножества <tex>R_k</tex>, равномощные <tex>R_{k+1}</tex>, тем самым рассмотрев все возможные уровни <tex>k+1</tex>. Для каждой точки из каждого подмножества <tex>R'_{k+1}</tex> рассмотрим степень ближайшей вершины и усредним всё, получив нужную нам оценку. <tex>E(\operatorname{deg_{S_k}} (\operatorname{nn} (q, S_{k+1}))) = \frac {1} {C^{|R_{k+1}|}_{|R_k|}} \cdot \sum\limits_{R'_{k+1}\subset R_k} \frac {1} {|R_{k+1}|} \sum\limits_{a_i \in R'_{k+1}} \operatorname{deg_{R_k}} (\operatorname{nn}(a_i,R'_{k+1}\backslash\{a_i\})) </tex> Назовём графом <tex>NN(\{a_i\})</tex> двудольный граф, в левой и правой долях содержащий точки <tex>\{a_i\}</tex>, рёбра <tex>uv</tex> которого означают, что точка <tex>v</tex> является ближайшей для точки <tex>u</tex> (точка <tex>u</tex> лежит в левой доли, точка <tex>v</tex> лежит в правой доли). Понятно, что <tex>\sum\limits_{a_i \in R'_{k+1}} \operatorname {deg_{R_k}} (\operatorname{nn}(a_i, R'_{k+1}\backslash\{a_i\})) = \sum\limits_{a_i\in R'_{k+1}} \operatorname{deg_{R_k}}(a_i) \cdot \operatorname{deg_{NN(R'_{k+1})}}(a_i)</tex>, так как степень каждой вершины <tex>a_i</tex> учтётся ровно столько раз, сколько рёбер ей инцидентно в правой доли графа <tex>NN</tex>. <tex>E(\operatorname{deg_{S_k}} (\operatorname{nn} (q, S_{k+1}))) = \frac {1} {C^{|R_{k+1}|}_{|R_k|}} \sum\limits_{R'_{k+1}\subset R_k} \frac {1} {|R_{k+1}|} \sum\limits_{a_i\in R'_{k+1}} \operatorname{deg_{R_k}}(a_i) \operatorname{deg_{NN(R'_{k+1})}}(a_i)</tex> По [[#closestlemma|лемме 11]] степень вершины из правой доли графа <tex>NN</tex> не может быть больше шести. <tex>E(\operatorname{deg_{S_k}} (\operatorname{nn} (q, S_{k+1}))) \le \frac {1} {C^{|R_{k+1}|}_{|R_k|}} \sum\limits_{R'_{k+1}\subset R_k} \frac {1} {|R_{k+1}|} \sum\limits_{a_i\in R'_{k+1}} \operatorname{deg_{R_k}}(a_i) \cdot 6 = \frac {6} {C^{|R_{k+1}|}_{|R_k|} \cdot |R_{k+1}|} \sum\limits_{R'_{k+1}\subset R_k} \sum\limits_{a_i\in R'_{k+1}} \operatorname{deg_{R_k}} (a_i) =6 \cdot \frac {\sum_{a_i\in R_k} \operatorname{deg}(a_i)} {|R_k|} = O(1)</tex>}}{{Лемма|about=13|statement=Среднее число точек, лежащих в окружности с центром в точке <tex>q</tex> и проходящей через <tex>v_{i+1}</tex>, равно <tex>O(1)</tex>.|id=diskvertexeslemma|proof=Рассмотрим точки триангуляции <tex>\{a_i\}</tex>. Для каждой точки <tex>a_i</tex> построим окружность с центром в точке <tex>a_i</tex>, проходящую через ближайшую к ней точку. Докажем, что заданная точка <tex>w</tex> попадёт в <tex>O(1)</tex> таких окружностей на предыдущем уровне. Разделим плоскость на шесть частей прямыми, проходящими через точку <tex>w</tex>. Рассмотрим одну из частей. Отсортируем все точки, попавшие в неё, по увеличению расстояния до <tex>w</tex>. Получим такую последовательность точек <tex>\{a_0, a_1, ...\}</tex>, что <tex>|wa_i|\le|wa_{i+1}|</tex>. Заметим, что если какая-нибудь точка <tex>a_i</tex> содержится на предыдущем уровне, то все точки, начиная с <tex>a_{i+1}</tex> уже не содержат в своей окружности точку<tex>w</tex>. Таким образом, среднее число точек <tex>k</tex>, в окружности которых содержится точка <tex>w</tex>: <tex>E(k)\le6\cdot\sum_i i(1-p)^i p = O(1)</tex> Таким образом, каждая точка содержится в <tex>O(1)</tex> окружностей, значит, каждая окружность содержит <tex>O(1)</tex> точек.}}{{Лемма|about=14|statement=Среднее число рёбер, пересечённое отрезком <tex>qv_{i+1}</tex> во втором этапе алгоритма локализации, равно <tex>O(1)</tex>.|id=edgeslemma|proof=Рассмотрим рёбра, пересекающие <tex>qv_{i+1}</tex>, для которых хотя бы одна из граничных точек окажется в окружности с центром в точке <tex>q</tex>, проходящей через <tex>v_{i+1}</tex>. Число таких рёбер не превосходит суммы степеней вершин, лежащих внутри окружности. А [[#diskvertexeslemma|по лемме 13]] число таких точек равно <tex>O(1)</tex>. При этом средняя степень вершины равна <tex>O(1)</tex>. Таким образом, число таких рёбер равно <tex>O(1)</tex>. Докажем, что число рёбер, пересекающих <tex>qv_{i+1}</tex>, для которых обе граничные точки лежат вне окружности, тоже равно <tex>O(1)</tex>. При вставке точки <tex>q</tex> в триангуляцию для этих рёбер перестанет выполняться критерий Делоне: в любой окружности, построенной на ребре как на хорде, будет содержаться либо точка <tex>q</tex>, либо точка <tex>v_{i+1}</tex>. Поэтому эти рёбра придётся флипнуть. Число флипов при вставке точки [[#flipnumberlemma|равно <tex>O(1)</tex>]], поэтому число таких рёбер равно <tex>O(1)</tex>. Итого число рёбер, пересекающих <tex>qv_{i+1}</tex>, равно <tex>O(1)</tex>.}}{{Лемма|about=15|statement=Среднее число треугольников, посещённых на третьем этапе алгоритма локализации, равно <tex>O(1)</tex>.|id=triangleslemma
|proof=
{{TODO|t=Картинку для ясности}}Предположим, что это не так. Назовём локализуемую точку <tex>q</tex>, а последнего кандидата на то, чтобы быть ближайшей точкой — <tex>v</tex>. Раз эта точка на самом деле не ближайшая, то в Каждый рассмотренный треугольник имеет хотя бы одну вершину внутри окружности, проходящей проведённой через <tex>vv_{i+1}</tex>, с центром в точке <tex>q</tex> найдутся ещё какие-то точки, . То есть число таких треугольников не смежные с <tex>v</tex>больше числа точек внутри этой окружности. Рассмотрим ближайшую из них к <tex>v</tex>: точку Таких точек [[#diskvertexeslemma|по лемме 13]] <tex>v'O(1)</tex>. Построим на <tex>vv'</tex> окружность как на диаметре. В этой окружности не будет лежать никаких точек, так как мы взяли ближайшую. Значитзначит, ребро число треугольников тоже равно <tex>vv'O(1)</tex> удовлетворяет критерию Делоне и должно являться ребром триангуляции, но по предположению этого ребра нет. Значит, предположение неверно.
}}
{{Лемма
|about=16
|statement=
Локализация точки на каждом уровне происходит за <tex>O(1)</tex>.
|id=onelevellemma
|proof=
Докажем, что каждый этап локализации происходит за <tex>O(1)</tex>.
 
'''1 этап''': [[#nearestdegreelemma|по лемме 12]] средняя степень вершины <tex>v_{i+1}</tex> равна <tex>O(1)</tex>, поэтому треугольников, в которых может лежать отрезок <tex>qv_{i+1}</tex> тоже <tex>O(1)</tex>. Просмотрев их все, за <tex>O(1)</tex> можно понять, в каком из них лежит отрезок <tex>qv_{i+1}</tex>.
=== Профит ==='''2 этап''': число рёбер, пересечённых отрезком <tex>qv_{i+1}</tex>, равно <tex>O(1)</tex> ([[#edgeslemma|по лемме 14]]). Поэтому этот этап локализации тоже происходит за <tex>O(1)</tex>. '''3 этап''': число треугольников, посещённых на третьем этапе локализации, равно <tex>O(1)</tex> ([[#triangleslemma|по лемме 15]]).}}{{TODOТеорема|tstatement=Время работы, требуемая памятьЛокализация точки в триангуляции происходит за <tex>O(\log n)</tex>.|proof=Очевидное следствие из [[#levelslemma|леммы 10]] и [[#onelevellemma|леммы 16]].}}
== Constraints ==
{{Определение
|definition=
'''Констрейнты''' — рёбра, которые нельзя флипать.
}}
{{Утверждение
|statement=
Хорошая триангуляция с констрейнтом может быть хорошей с точностью до видимости через констрейнт.
}}
=== Вставка ===
[[Файл:Constraint.png|400px|thumb|right|Красным выделен вставляемый констрейнт]]Смотрим на список рёбер, пересечённых ещё не вставленным констрейнтом ({{TODO|t=Картинку бы}}), и флипаем их. Последнее флипнутое ребро и будет констрейнтом {{Acronym|(по понятным причинам)|Рёбра, пересечённые констрейнтом, после флипа будут начинаться в той же точке, что и констрейнт, а заканчиваться в точке, в которой начинается ещё одно пересекающее ребро. Последнее же ребро будет начинаться и заканчиваться в начале и конце констрейнта}}, после флипа пометим его как констрейнт. Понятное дело, критерий «хорошести» ребра при таких фокусах немного изменится: туда добавится проверка на то, не является ли ребро констрейнтом. Затем флипаем всё, что могло стать плохим (кроме констрейнта), пока триангуляция вновь не станет условно хорошей. {{TODO|t=Тут должно быть ещё несколько упоительных фактов про то, что вставка производится за <tex>O(k^2)</tex>, где <tex>k</tex> — число пересечённых рёбер, и про то, что, если флипать что попало, можно нарваться на флип в невыпуклом многоугольнике}} 
=== Удаление ===
Аналогично: помечаем ребро как не-констрейнт и начинаем флипатьфлипаем, пока не дойдём до хорошей (или условно хорошей) триангуляции. Работает оно столько же, сколько и вставка, ибо всё, что мы нафлипали при вставке, нужно перефлипать обратно. === Констрейнты в локализационной структуре ===В локализационную структуру констрейнты нужно вставлять только на нижний уровень, ибо выше они нафиг не нужны.
1632
правки

Навигация