Редактирование: Quotient filter

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
'''Quotient filter''' {{---}} [[Фильтр_Блума#Определение|вероятностное множество]].
+
'''Quotient filter''' {{---}} вероятностная структура данных, позволяющая проверить принадлежность элемента множеству. При этом существует возможность получить ложноположительное срабатывание (элемента в множестве нет, но структура данных сообщает, что он есть), но не ложноотрицательное (элемент в множестве есть, но структура данных сообщает, что его нет).
  
 
Существует связь между размером хранилища и шансом ложноположительного срабатывания. Поддерживаются операции добавления нового элемента в множество. С увеличением размера хранимого множества повышается вероятность ложного срабатывания.  
 
Существует связь между размером хранилища и шансом ложноположительного срабатывания. Поддерживаются операции добавления нового элемента в множество. С увеличением размера хранимого множества повышается вероятность ложного срабатывания.  
Строка 7: Строка 7:
 
[[Файл:filter.png|400px|thumb|right|Фильтр используется для ускорения ответов в хранилище ключ-значение. Пары ключ-значение содержатся в хранилище с медленным доступом. Фильтр отфильтровывает ненужные запросы в хранилище (запрос ключа которого точно нет в хранилище), что ускоряет его работу вцелом, но увеличевает потребление памяти]]
 
[[Файл:filter.png|400px|thumb|right|Фильтр используется для ускорения ответов в хранилище ключ-значение. Пары ключ-значение содержатся в хранилище с медленным доступом. Фильтр отфильтровывает ненужные запросы в хранилище (запрос ключа которого точно нет в хранилище), что ускоряет его работу вцелом, но увеличевает потребление памяти]]
  
В quotient filter хеш-функция возвращает <tex>p</tex> битовый хеш, последние <tex>r</tex> бит которого называются '''остатком''' (англ. ''remainder''), а <tex>q = p - r</tex> старших бит называются '''частным''' (англ. ''quotient''), отсюда название структуры quotient filter<ref>Knuth, Donald (1973). The Art of Computer Programming:Searching and Sorting, volume 3. Section 6.4, exercise 13: Addison Wesley</ref>. Фильтр представляет собой [[:Хеш-таблица|хеш-таблицу]], в которой харанится остаток и <tex>3</tex> бита дополнительной информации (удобно хранить в целочисленном типе, используя <tex>3</tex> старших бита под дополнительную информацию, а оставшиеся биты под остаток, накладывает ограничение на размер остатка). Биты дополнительной информации используются для разрешения ситуации, когда частное различных ключей указывает на одну ячейку в хеш-таблице. Размер хеш-таблицы составляет <tex>2^q</tex>, так как есть всего <tex>2^q</tex> разных частных.
+
В quotient filter хеш-функция возвращает <tex>p</tex> битовый хеш, последние <tex>r</tex> бит которого называются '''остатком''' (англ. ''remainder''), а <tex>q = p - r</tex> старших бит называются '''частным''' (англ. ''quotient''), отсюда название структуры quotient filter<ref>Knuth, Donald (1973). The Art of Computer Programming:Searching and Sorting, volume 3. Section 6.4, exercise 13: Addison Wesley</ref>. Фильтр представляет собой [[:Хеш-таблица|хеш-таблицу]], в которой харанится остаток и <tex>3</tex> бита дополнительной информации (удобно хранить в целочисленном типе, используя <tex>3</tex> старших бита под дополнительную информацию, а оставшиеся биты под остаток, накладывает ограничение на размер остатка). Они используются для разрешения ситуации, когда частное различных ключей указывает на одну ячейку в хеш-таблице. Размер хеш-таблицы составляет <tex>2^q</tex>, так как есть всего <tex>2^q</tex> разных частных.
  
 
Пусть у нас есть ключ <tex>K</tex>, его хеш обозначим <tex>h(K)</tex>, остаток <tex>h_r</tex> и частное <tex>h_q</tex>. Попробуем поместить остаток в хеш-таблицу в ячейку с индексом <tex>h_q</tex>, называемую канонической. Возможно, ячейка уже занята, так как существует шанс полных коллизий (остаток и частное разных ключей совпадают) или частичных коллизий (частное разных ключей совпадают).  
 
Пусть у нас есть ключ <tex>K</tex>, его хеш обозначим <tex>h(K)</tex>, остаток <tex>h_r</tex> и частное <tex>h_q</tex>. Попробуем поместить остаток в хеш-таблицу в ячейку с индексом <tex>h_q</tex>, называемую канонической. Возможно, ячейка уже занята, так как существует шанс полных коллизий (остаток и частное разных ключей совпадают) или частичных коллизий (частное разных ключей совпадают).  
При полной коллизии мы получим ложноположительное срабатывание, но при частичной коллизии, с помощью дополнительных битов это избегается. Когда каноническая ячейка занята, помещаем остаток в какую-то ячейку справа. Этот способ решения колизий схож с [[:Разрешение_коллизий|линейным методом разрешения колизий]].  
+
При полной коллизии мы получим ложноположительное срабатывание, но при частичной коллизии с помощью дополнительных битов это избегается. Когда каноническая ячейка занята, помещаем остаток в какую-то ячейку справа. Этот способ решения колизий схож с [[:Разрешение_коллизий|линейным методом разрешения колизий]].  
  
 
Последовательность ячеек, имеющих одинаковые частные называется '''пробегом''' (англ. ''run''). Возможно, что начало пробега не занимает канонический слот, если он уже занят каким-то другим пробегом.
 
Последовательность ячеек, имеющих одинаковые частные называется '''пробегом''' (англ. ''run''). Возможно, что начало пробега не занимает канонический слот, если он уже занят каким-то другим пробегом.
Строка 47: Строка 47:
  
 
Пусть мы ищем ключ <tex>K</tex>. Смотрим в ячейку с индексом <tex>h_q</tex>, это каноническая ячейка для частного <tex>h_q</tex>. Если в этой ячейке бит занятости не единица, то элемент точно не содержится в множестве.
 
Пусть мы ищем ключ <tex>K</tex>. Смотрим в ячейку с индексом <tex>h_q</tex>, это каноническая ячейка для частного <tex>h_q</tex>. Если в этой ячейке бит занятости не единица, то элемент точно не содержится в множестве.
Если бит занятости единица, то нам нужно найти пробег для <tex>h_q</tex>. Так как начало нужного пробега может быть сдвинуто, найдем начало кластера. Идем влево от ячейки с индексом <tex>h_q</tex> и ищем первую с битом сдвига равным нулю, эта ячейка и будет началом кластера. Пока мы идем влево от ячейки с индексом <tex>h_q</tex> будем поддерживать счетчик, который бедет показывать сколько пробегов нам нужно будет пропустить от начала кластера. Каждая ячейка с битом занятости равным единице увеличивает счетчик на <tex>1</tex>. После того как мы нашли начало кластера, пойдем от него вправо, каждая ячейка с битом продолжения равным нулю говорит о завершении пробега, когда счетчик станет равным нулю мы найдем нужный нам пробег для частного <tex>h_q</tex>. Если в этом пробеге содержится <tex>h_r</tex>, то <tex>K</tex>, вероятно, содержится в множестве, иначе <tex>K</tex> точно не содержится в множестве.
+
Если бит занятости единица, то нам нужно найти пробег для <tex>h_q</tex>. Так как начало нужного пробега может быть сдвинуто, найдем начало кластера. Идем влево от ячейки с индексом <tex>h_q</tex> и ищем первую с битом сдвига равным нулю, эта ячейка и будет началом кластера. Пока мы идем влево от ячейки с индексом <tex>h_q</tex> будем поддерживать счетчик, который бедет показывать сколько пробегов нам нужно будет пропустить от начала кластера. Каждая ячейка с битом занятости равным единице увеличивает счетчик на <tex>1</tex>. После того как мы нашли начало кластера, пойдем от него влево, каждая ячейка с битом продолжения равным нулю говорит о завершении пробега, когда счетчик станет равным нулю мы найдем нужный нам пробег для частного <tex>h_q</tex>. Если в этом пробеге содержится <tex>h_r</tex>, то <tex>K</tex>, вероятно, содержится в множестве, иначе <tex>K</tex> точно не содержится в множестве.
  
 
=== Вставка ===
 
=== Вставка ===

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: