Суперпозиции — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
}}
 
}}
  
Множество всех возможных не эквивалентных друг другу суперпозиций данного множества функций образует [[Представление функции формулой, полные системы функций|замыкание]] данного множества функций.<br />
+
Множество всех возможных не эквивалентных друг другу суперпозиций данного множества функций образует [[Представление функции формулой, полные системы функций|замыкание]] данного множества функций.
  
 
== Способы получения суперпозиций ==
 
== Способы получения суперпозиций ==
Рассмотрим две [[Определение булевой функции|булевы функции]]:<br />
+
Рассмотрим две [[Определение булевой функции|булевы функции]]:
функцию <tex>f</tex> от <tex>n</tex> аргументов <tex>f(x_{1}, x_{2}, ..., x_{n})</tex> и<br />
+
 
функцию <tex>g</tex> от <tex>m</tex> аргументов <tex>g(x_{1}, x_{2}, ..., x_{m})</tex>.<br />
+
функцию <tex>f</tex> от <tex>n</tex> аргументов <tex>f(x_{1}, x_{2}, ..., x_{n})</tex> и
 +
функцию <tex>g</tex> от <tex>m</tex> аргументов <tex>g(x_{1}, x_{2}, ..., x_{m})</tex>.<
 +
 
  
 
Тогда мы можем получить новую функцию из имеющихся двумя способами:
 
Тогда мы можем получить новую функцию из имеющихся двумя способами:
Строка 19: Строка 21:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Подстановкой''' функции <tex>g</tex> в функцию <tex>f</tex> называется замена i-того аргумента функции <tex>f</tex> значением функции <tex>g</tex>:<br />
+
'''Подстановкой''' функции <tex>g</tex> в функцию <tex>f</tex> называется замена i-того аргумента функции <tex>f</tex> значением функции <tex>g</tex>:
  
 
<center><tex>h(x_{1}, ..., x_{n+m-1}) = f(x_{1}, ..., x_{i-1}, g(x_{i}, ..., x_{i+m-1}), x_{i+m}, ..., x_{n+m-1})</tex></center>
 
<center><tex>h(x_{1}, ..., x_{n+m-1}) = f(x_{1}, ..., x_{i-1}, g(x_{i}, ..., x_{i+m-1}), x_{i+m}, ..., x_{n+m-1})</tex></center>
Строка 26: Строка 28:
 
Допускается также не только подстановка одной функции в другую, но и подстановка функции в саму себя.
 
Допускается также не только подстановка одной функции в другую, но и подстановка функции в саму себя.
  
При подстановке функции g вместо i-того аргумента функции f, результирующая функция h будет принимать аргументы, которые можно разделить на следующие блоки: <br />
+
При подстановке функции g вместо i-того аргумента функции f, результирующая функция h будет принимать аргументы, которые можно разделить на следующие блоки:
 +
 
 
{|
 
{|
 
  |1. <tex> x_{1}, ..., x_{i-1}</tex>
 
  |1. <tex> x_{1}, ..., x_{i-1}</tex>
Строка 38: Строка 41:
 
  |}
 
  |}
  
'''Пример:'''<br />
+
'''Пример:'''
<tex> f(a,b) = a \vee b </tex> {{---}} первая исходная функция<br />
+
 
<tex> g(a)  = \neg a </tex> {{---}} вторая исходная функция<br />
+
Исходные функции:
<tex> h(a,b) = f(a,g(b)) = a \vee \neg b </tex> {{---}} подстановка функции <tex>g</tex> вместо второго аргумента функции <tex>f</tex><br />
+
#<tex> f(a,b) = a \vee b </tex>
В данном примере при помощи подстановки мы получили функцию <tex>h(a,b)=a \leftarrow b</tex>.
+
#<tex> g(a)  = \neg a </tex>
 +
 
 +
<tex> h(a,b) = f(a,g(b)) = a \vee \neg b </tex> {{---}} подстановка функции <tex>g</tex> вместо второго аргумента функции <tex>f</tex>. В данном примере при помощи подстановки мы получили функцию <tex>h(a,b)=a \leftarrow b</tex>.
  
 
=== Отождествление переменных ===
 
=== Отождествление переменных ===
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Отождествлением переменных''' называется подстановка i-того аргумента функции <tex>f</tex> вместо j-того аргумента:<br />
+
'''Отождествлением переменных''' называется подстановка i-того аргумента функции <tex>f</tex> вместо j-того аргумента:
 +
 
 
<center><tex>h(x_{1}, ..., x_{n-1}) = f(x_{1}, ..., x_{i}, ..., x_{j-1}, x_{i}, x_{j+1}, ..., x_{n-1})</tex></center>
 
<center><tex>h(x_{1}, ..., x_{n-1}) = f(x_{1}, ..., x_{i}, ..., x_{j-1}, x_{i}, x_{j+1}, ..., x_{n-1})</tex></center>
 
}}
 
}}
  
'''Пример:'''<br />
+
'''Пример:'''
<tex> f(a,b) = a \vee b </tex> {{---}} исходная функция<br />
+
 
<tex> h(a)  = a \vee a </tex> {{---}} функция с отождествленными первым и вторым аргументами<br />
+
<tex> f(a,b) = a \vee b </tex> {{---}} исходная функция
 +
 
 +
<tex> h(a)  = a \vee a </tex> {{---}} функция с отождествленными первым и вторым аргументами
 +
 
 
Очевидно, в данном примере мы получили функцию <tex>P_{1}</tex> {{---}} проектор единственного аргумента.
 
Очевидно, в данном примере мы получили функцию <tex>P_{1}</tex> {{---}} проектор единственного аргумента.
  

Версия 06:47, 8 октября 2011

Определение:
Суперпозиция (сложная функция) — это функция, полученная из некоторого множества функций путем подстановки одной функции в другую или отождествления переменных.


Множество всех возможных не эквивалентных друг другу суперпозиций данного множества функций образует замыкание данного множества функций.

Способы получения суперпозиций

Рассмотрим две булевы функции:

функцию [math]f[/math] от [math]n[/math] аргументов [math]f(x_{1}, x_{2}, ..., x_{n})[/math] и функцию [math]g[/math] от [math]m[/math] аргументов [math]g(x_{1}, x_{2}, ..., x_{m})[/math].<


Тогда мы можем получить новую функцию из имеющихся двумя способами:

  1. Подстановкой одной функции в качестве некоторого аргумента для другой;
  2. Отождествлением аргументов функций.

Подстановка одной функции в другую

Определение:
Подстановкой функции [math]g[/math] в функцию [math]f[/math] называется замена i-того аргумента функции [math]f[/math] значением функции [math]g[/math]:
[math]h(x_{1}, ..., x_{n+m-1}) = f(x_{1}, ..., x_{i-1}, g(x_{i}, ..., x_{i+m-1}), x_{i+m}, ..., x_{n+m-1})[/math]


Допускается также не только подстановка одной функции в другую, но и подстановка функции в саму себя.

При подстановке функции g вместо i-того аргумента функции f, результирующая функция h будет принимать аргументы, которые можно разделить на следующие блоки:

1. [math] x_{1}, ..., x_{i-1}[/math] – аргументы функции [math]f[/math] до вставленной функции [math]g[/math]
2. [math] x_{i}, ..., x_{i+m-1} [/math] – используются как аргументы для вставленной функции [math]g(x_{i}, ..., x_{i+m-1})[/math]
3. [math] x_{i+m}, ..., x_{n+m-1} [/math] – аргументы функции [math]f[/math] после вставленной функции [math]g[/math]

Пример:

Исходные функции:

  1. [math] f(a,b) = a \vee b [/math]
  2. [math] g(a) = \neg a [/math]

[math] h(a,b) = f(a,g(b)) = a \vee \neg b [/math] — подстановка функции [math]g[/math] вместо второго аргумента функции [math]f[/math]. В данном примере при помощи подстановки мы получили функцию [math]h(a,b)=a \leftarrow b[/math].

Отождествление переменных

Определение:
Отождествлением переменных называется подстановка i-того аргумента функции [math]f[/math] вместо j-того аргумента:
[math]h(x_{1}, ..., x_{n-1}) = f(x_{1}, ..., x_{i}, ..., x_{j-1}, x_{i}, x_{j+1}, ..., x_{n-1})[/math]


Пример:

[math] f(a,b) = a \vee b [/math] — исходная функция

[math] h(a) = a \vee a [/math] — функция с отождествленными первым и вторым аргументами

Очевидно, в данном примере мы получили функцию [math]P_{1}[/math] — проектор единственного аргумента.


Ранги суперпозиций

Суперпозиция имеет ранг [math]n[/math], если минимальное число подстановок и отождествлений, за она может быть получена из исходного множества функций [math]K[/math], равно [math]n[/math]. Обозначение: [math]K^{n}[/math]
Например, [math]K^{1}[/math] — множество суперпозиций, полученных из исходного множества [math]K[/math] за одну подстановку или отождествление, [math]K^{2}[/math] — множество суперпозиций, полученных из множества [math]K \cup{K^{1}} [/math] за одну подстановку или отождествление и т.д.

Список литературы

  1. Композиция функций в математике
  2. Дискретная математика, МГУ