Турниры — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 4: Строка 4:
 
Название этого класса графов связано с тем, что их удобно использовать для описания результатов командных соревнований в некоторых видах спорта.
 
Название этого класса графов связано с тем, что их удобно использовать для описания результатов командных соревнований в некоторых видах спорта.
  
 +
==Гамильтоновы турниры==
 
{{Определение
 
{{Определение
 
|definition = Турнир называется гамильтоновым, если он содержит гамильтонов цикл.
 
|definition = Турнир называется гамильтоновым, если он содержит гамильтонов цикл.
Строка 11: Строка 12:
 
Не все турниры гамильтоновы. Определение не исключает существование вершины с полустепенью исхода или захода равной нулю: в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа).
 
Не все турниры гамильтоновы. Определение не исключает существование вершины с полустепенью исхода или захода равной нулю: в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа).
  
По [[Теорема Редеи-Камиона| теореме Редеи-Камиона]] турнир является сильно связанным тогда и только тогда, когда он гамильтонов.
+
[[Теорема Редеи-Камиона]] устанавливает 2 следующих факта:
 +
# Все турниры полугамильтоновы (содержат остовную цепочку).
 +
# Турнир гамильтонов тогда и только тогда, когда он сильно связен.
  
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Обходы графов]]
 
[[Категория: Обходы графов]]

Версия 05:21, 6 декабря 2011

турниры из 2, 3 и 4 вершин

Турнирориентированный граф, между любой парой вершин которого есть ровно одно ориентированное ребро.

Название этого класса графов связано с тем, что их удобно использовать для описания результатов командных соревнований в некоторых видах спорта.

Гамильтоновы турниры

Определение:
Турнир называется гамильтоновым, если он содержит гамильтонов цикл.


Негамильтонов турнир

Не все турниры гамильтоновы. Определение не исключает существование вершины с полустепенью исхода или захода равной нулю: в первую нельзя войти, а из второй — выйти. Однако отсутствие таких вершин не означает, что турнир гамильтонов (пример — на рисунке справа).

Теорема Редеи-Камиона устанавливает 2 следующих факта:

  1. Все турниры полугамильтоновы (содержат остовную цепочку).
  2. Турнир гамильтонов тогда и только тогда, когда он сильно связен.