Формула полной вероятности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Добавлены примеры, и дополнена теоретическая часть)
Строка 4: Строка 4:
 
{{Определение
 
{{Определение
 
|definition =  
 
|definition =  
[[Мощность множества | Не более чем счётное]] [[Множества | множество]] событий <tex> B_1, B_2, ..., B_n </tex>, таких что:
+
[[Мощность множества | Не более чем счётное]] [[Множества | множество]] событий <tex> B_1, B_2, ..., B_{n} </tex>, таких что:
# все события попарно несовместны: <tex> \forall i,~j = 1, 2, ..., n~B_i \cap B_j = \varnothing </tex>
+
# все события попарно несовместны: <tex> \forall i,~j = 1, 2, ..., n~B_{i} \cap B_{j} = \varnothing </tex>
# их объединение образует пространство элементарных исходов: <tex>P(B_i)~>~0,~B_1~\cup ~B_2~\cup ...~\cup ~B_n = \Omega </tex>
+
# их объединение образует пространство элементарных исходов: <tex>P(B_{i})~>~0,~B_1~\cup ~B_2~\cup ...~\cup ~B_n = \Omega </tex>
 
}}
 
}}
 
В этом случае события <tex>B_i</tex> ещё называются гипотезами.
 
В этом случае события <tex>B_i</tex> ещё называются гипотезами.
Строка 14: Строка 14:
 
формула полной вероятности
 
формула полной вероятности
 
| statement =  
 
| statement =  
Вероятность события <tex> A~\subset ~\Omega </tex>, которое может произойти только вместе с одним из событий <tex>\{B_i\}_{i=1}^{n} </tex>, образующих полную группу, равна сумме произведений вероятностей гипотез на условные вероятности события, вычисленные соотвественно при каждой из гипотез.
+
Вероятность события <tex> A~\subset ~\Omega </tex>, которое может произойти только вместе с одним из событий <tex> B_1, B_2, ..., B_{n} </tex>, образующих
<tex> p(A) = \sum\limits_{i=1}^{n} p( A \mid B_i) p(B_i) </tex>  
+
 
 +
полную группу, равна сумме произведений вероятностей гипотез на условные вероятности события, вычисленные соотвественно при каждой из гипотез.
 +
 
 +
<tex> {P}(A) = \sum\limits_{i=1}^{n} {P}( A \mid B_i) {P}(B_i) </tex>  
 
| proof =  
 
| proof =  
  
События <tex>\{B_i\}_{i=1}^{n} </tex> образуют полную группу событий, значит событие <tex> A </tex> можно представить в виде следующей суммы:
+
Так как события <tex>\{B_i\}_{i=1}^{n} </tex> образуют полную группу, то по определению событие <tex> A </tex> можно представить следующим образом:
  
<tex> A = A\cap B_{1} + A\cap B_{2} + ... + A\cap B_{n} = \sum\limits_{i=1}^{n} A\cap B_{i} </tex>     (Для удобства чтения формулы обозначим операцию объединения <tex> \cup </tex> за <tex> + </tex>)
+
<tex>  
 +
A~=~A \cap \Omega ~=~ A \cap \big( \bigcup\limits_{i=1}^{n} B_{i} \big) ~=~ \bigcup\limits_{i=1}^{n} ( A \cap B_{i} )
 +
</tex>
  
 +
События <tex>\{B_i\}_{i=1}^{n} </tex> попарно несовместны, значит и события <tex> (A\cap B_{i}) </tex> тоже несовместны. Тогда после применения теоремы о сложении вероятностей несовместных событий, а также воспользовавшись определением условной вероятности, получаем:
  
События <tex>\{B_i\}_{i=1}^{n} </tex> несовместны, значит и события <tex> A\cap B_{i} </tex> тоже несовместны. Тогда можно применить теорему о сложении вероятностей несовместных событий:
+
<tex>  
 +
{P}(A)~=~{P}\Big( \bigcup\limits_{i=1}^{n} ( A \cap B_{i} ) \Big) ~=~ \sum\limits_{i=1}^{n} {P}(A\cap B_i) ~=~ \sum\limits_{i=1}^{n} {P}(A \mid B_i){P}(B_i)
 +
</tex>
  
<tex>{p}(A) = \sum\limits_{i=1}^{n} {p}( A\cap B_i)</tex>
+
}}
При этом
 
  
<tex> {p}( A\cap B_i) = {p} (B_i) {p} (A \mid B_i) </tex>
+
==Пример==
 +
'''Условие.''' Имеются 3 одинаковые урны с шарами. В первой из них 3 белых и 4 черных шара, во второй {{---}} 2 белых и 5 чёрных, а в третьей {{---}} 10 чёрных шаров. Из случайно выбранной урны наудачу вынут шар. С какой вероятностью он окажется белым?
  
Окончательно получаем:
+
'''Решение.''' Будем считать события <tex> B_1, B_2, B_3 </tex> выбором урны с соотвествующим номером, а событие <tex>A</tex> {{---}} выбором белого шара. По условию задачи все события выбора урны равновероятны, значит:
 +
 +
<tex> {P}(B_1)~=~{P}(B_2)~=~{P}(B_3)~=~ \genfrac{}{}{}{0}{1}{3} </tex>
  
<tex>{p}(A) = \sum\limits_{i=1}^{n} {p}( A \mid B_i) {p}(B_i)</tex>
+
Теперь найдём вероятность события <tex>A</tex> при выборе каждой урны:
}}
+
 
==Замечание==
+
<tex>
 +
{P}(A \mid B_1) = \genfrac{}{}{}{0}{2}{7} ,~ {P}(A \mid B_2) = \genfrac{}{}{}{0}{3}{7} ,~ {P}(A \mid B_3) = 0.
 +
</tex>
 +
 
 +
В результате получаем
 +
<tex>
 +
{P}(A) ~=~ \genfrac{}{}{}{0}{1}{3}  \cdot \genfrac{}{}{}{0}{2}{7} +\genfrac{}{}{}{0}{1}{3}  \cdot \genfrac{}{}{}{0}{3}{7} +\genfrac{}{}{}{0}{1}{3} \cdot 0 ~\approx ~ 0{.}238
 +
</tex>
 +
 
 +
==Метод фильтрации спама==
 +
При проверке письма вычисляется вероятность того, что оно {{---}} спам. Для каждого слова эксперементально подсчитывается его ''вес'' {{---}} % содержания этого слова в письмах, отмеченных пользователем, как спам. Тогда ''весом'' письма является среднее ''весов'' всех его слов. Таким образом программа(анти-спам бот) считает письмо спамом, если его ''вес'' больше какой-то заданной пользователем планки (обычно 60-80%). После вынесения решения о полученном письме происходит пересчёт в базе данных весов слов, составляющих текст письма.
 +
 
 +
Недостаток метода заключается в том, что одни слова чаще встречаются в спаме, а другие {{---}} в обычных письмах. Тогда метод неэффективен, если данное предположение неверно.
  
Формула полной вероятности также имеет следующую интерпретацию. Пусть <tex>N</tex> — случайная величина, имеющая распределение
+
'''Замечание.''' Если 80% писем, содержащих фразу <tex>"</tex>Привет :) Как дела?)<tex>"</tex>, являлись спамом, то и следующее письмо с этим словосочетанием c большой вероятностью {{---}} спам.
:<tex>{p}(N=n) = {p}(B_n)</tex>.
 
Тогда
 
:<tex>{p}(A) = {E}\left[{p}(A\mid N)\right]</tex>,
 
т.е. априорная вероятность события равна среднему его апостериорной вероятности.
 
  
 
==См. также==
 
==См. также==
Строка 48: Строка 66:
  
 
== Источники ==
 
== Источники ==
*[http://ru.wikipedia.org/wiki/Формула_полной_вероятности http://ru.wikipedia.org/wiki/Формула_полной_вероятности]
+
* [http://nsu.ru/mmf/tvims/chernova/tv/lec/node14.html NSU | Формула полной вероятности]
 +
* [http://vm.psati.ru/downloads/uch-pos-tv.pdf Конспект лекций | Теория вероятностей]
 +
 
 +
[[Категория: Дискретная математика и алгоритмы]]
 +
[[Категория: Формула полной вероятности]]

Версия 05:22, 6 декабря 2011

Формула полной вероятности позволяет вычислить вероятность интересующего события [math] A [/math] через вероятности событию [math] A [/math] произойти при выполнении гипотез и вероятность этих гипотез.

Теорема

Определение:
Не более чем счётное множество событий [math] B_1, B_2, ..., B_{n} [/math], таких что:
  1. все события попарно несовместны: [math] \forall i,~j = 1, 2, ..., n~B_{i} \cap B_{j} = \varnothing [/math]
  2. их объединение образует пространство элементарных исходов: [math]P(B_{i})~\gt ~0,~B_1~\cup ~B_2~\cup ...~\cup ~B_n = \Omega [/math]

В этом случае события [math]B_i[/math] ещё называются гипотезами.

Теорема (формула полной вероятности):
Вероятность события [math] A~\subset ~\Omega [/math], которое может произойти только вместе с одним из событий [math] B_1, B_2, ..., B_{n} [/math], образующих

полную группу, равна сумме произведений вероятностей гипотез на условные вероятности события, вычисленные соотвественно при каждой из гипотез.

[math] {P}(A) = \sum\limits_{i=1}^{n} {P}( A \mid B_i) {P}(B_i) [/math]
Доказательство:
[math]\triangleright[/math]

Так как события [math]\{B_i\}_{i=1}^{n} [/math] образуют полную группу, то по определению событие [math] A [/math] можно представить следующим образом:

[math] A~=~A \cap \Omega ~=~ A \cap \big( \bigcup\limits_{i=1}^{n} B_{i} \big) ~=~ \bigcup\limits_{i=1}^{n} ( A \cap B_{i} ) [/math]

События [math]\{B_i\}_{i=1}^{n} [/math] попарно несовместны, значит и события [math] (A\cap B_{i}) [/math] тоже несовместны. Тогда после применения теоремы о сложении вероятностей несовместных событий, а также воспользовавшись определением условной вероятности, получаем:

[math] {P}(A)~=~{P}\Big( \bigcup\limits_{i=1}^{n} ( A \cap B_{i} ) \Big) ~=~ \sum\limits_{i=1}^{n} {P}(A\cap B_i) ~=~ \sum\limits_{i=1}^{n} {P}(A \mid B_i){P}(B_i) [/math]
[math]\triangleleft[/math]

Пример

Условие. Имеются 3 одинаковые урны с шарами. В первой из них 3 белых и 4 черных шара, во второй — 2 белых и 5 чёрных, а в третьей — 10 чёрных шаров. Из случайно выбранной урны наудачу вынут шар. С какой вероятностью он окажется белым?

Решение. Будем считать события [math] B_1, B_2, B_3 [/math] выбором урны с соотвествующим номером, а событие [math]A[/math] — выбором белого шара. По условию задачи все события выбора урны равновероятны, значит:

[math] {P}(B_1)~=~{P}(B_2)~=~{P}(B_3)~=~ \genfrac{}{}{}{0}{1}{3} [/math]

Теперь найдём вероятность события [math]A[/math] при выборе каждой урны:

[math] {P}(A \mid B_1) = \genfrac{}{}{}{0}{2}{7} ,~ {P}(A \mid B_2) = \genfrac{}{}{}{0}{3}{7} ,~ {P}(A \mid B_3) = 0. [/math]

В результате получаем [math] {P}(A) ~=~ \genfrac{}{}{}{0}{1}{3} \cdot \genfrac{}{}{}{0}{2}{7} +\genfrac{}{}{}{0}{1}{3} \cdot \genfrac{}{}{}{0}{3}{7} +\genfrac{}{}{}{0}{1}{3} \cdot 0 ~\approx ~ 0{.}238 [/math]

Метод фильтрации спама

При проверке письма вычисляется вероятность того, что оно — спам. Для каждого слова эксперементально подсчитывается его вес — % содержания этого слова в письмах, отмеченных пользователем, как спам. Тогда весом письма является среднее весов всех его слов. Таким образом программа(анти-спам бот) считает письмо спамом, если его вес больше какой-то заданной пользователем планки (обычно 60-80%). После вынесения решения о полученном письме происходит пересчёт в базе данных весов слов, составляющих текст письма.

Недостаток метода заключается в том, что одни слова чаще встречаются в спаме, а другие — в обычных письмах. Тогда метод неэффективен, если данное предположение неверно.

Замечание. Если 80% писем, содержащих фразу [math]"[/math]Привет :) Как дела?)[math]"[/math], являлись спамом, то и следующее письмо с этим словосочетанием c большой вероятностью — спам.

См. также

Источники