Задача о расстоянии Дамерау-Левенштейна — различия между версиями
Dima (обсуждение | вклад) |
Dima (обсуждение | вклад) |
||
| Строка 113: | Строка 113: | ||
*Переставить местами соседние символы, затем вставить некоторое количество символов между ними; | *Переставить местами соседние символы, затем вставить некоторое количество символов между ними; | ||
*Удалить некоторое количество символов, а затем переставить местами символы, ставшие соседними. | *Удалить некоторое количество символов, а затем переставить местами символы, ставшие соседними. | ||
| + | |||
| + | Тогда если символ <tex>S[i]</tex> встречался в <tex>T</tex> на позиции <tex>j1</tex>, а символ <tex>T[j]</tex> встречался в <tex>S</tex> на позиции <tex>i1</tex>; то <tex>T</tex> может быть получена из <tex>S</tex> удалением символов <tex>S[i1 + 1]..S[i - 1]</tex>, транспозицией ставших соседними <tex>S[i1]</tex> и <tex>S[i]</tex> и вставкой символов <tex>T[j1 + 1]..T[j - 1]</tex>. Суммарно на это будет затрачено <tex>D(i1, j1) + (i - i1 - 1) + 1 + (j - j1 - 1)</tex> операций. Следовательно выражение с условием <tex>(*)</tex> выбирает оптимальную последовательность операций, рассматривая случай с транспозицией и без неё. | ||
Псевдокод алгоритма: | Псевдокод алгоритма: | ||
Версия 07:29, 8 февраля 2012
| Определение: |
| Расстояние Дамерау — Левенштейна (Damerau — Levenshtein distance) между двумя строками, состоящими из конечного числа символов — это минимальное число операций вставки, удаления, замены одного символа и транспозиции двух соседних символов, необходимых для перевода одной строки в другую. |
Является модификацией расстояния Левенштейна, отличается от него добавлением операции перестановки.
Расстояние Дамерау — Левенштейна является метрикой. (Предполагаем, что цены операций таковы, что выполнено правило треугольника: если две последовательные операции можно заменить одной, то это не ухудшает общую цену.)
Практическое применение
Расстояние Дамерау — Левенштейна, как и метрика Левенштейна, является мерой "схожести" двух строк. Алгоритм его поиска находит применение в реализации нечёткого поиска, а также в биоинформатике (сравнение ДНК), несмотря на то, что изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал, что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау — Левенштейна часто используется в редакторских программах для проверки правописания).
Упрощённый алгоритм
Рассмотрим алгоритм, отличающийся от алгоритма поиска расстояния Левенштейна одной проверкой (храним матрицу , где — расстояние между префиксами строк: первыми i символами строки и первыми j символами строки ). Рекуррентное соотношение имеет вид:
, где
Таким образом для получения ответа необходимо заполнить матрицу D, пользуясь рекуррентным соотношением. Сложность алгоритма: . Затраты памяти: .
Псевдокод алгоритма:
int DamerauLevenshteinDistance(char S[1..m], char T[1..n])
declare int d[0..m, 0..n]
declare int i, j, cost
// База динамики
for i from 0 to m
d[i, 0] = i
for j from 1 to n
d[0, j] = j
for i from 1 to m
for j from 1 to n
// Стоимость замены
if S[i] == T[j] then cost = 0
else cost = 1
d[i, j] = minimum(
d[i-1, j ] + 1, // удаление
d[i , j-1] + 1, // вставка
d[i-1, j-1] + cost // замена
)
if(i > 1 and j > 1
and S[i] == T[j-1]
and S[i-1] == T[j]) then
d[i, j] = minimum(
d[i, j],
d[i-2, j-2] + costTransposition // транспозиция
)
return d[m, n]
Контрпример: и . Расстояние Дамерау — Левенштейна между строками равно 2 (), однако функция приведённая выше возвратит 3. Дело в том, что использование этого упрощённого алгоритма накладывает ограничение: любая подстрока может быть редактирована не более одного раза. Поэтому переход невозможен, и последовательность действий такая: ().
Условие многих практических задач не предполагает многократного редактирования подстрок, поэтому часто достаточно упрощённого алгоритма. Ниже представлен более сложный алгоритм, который корректно решает задачу поиска расстояния Дамерау — Левенштейна.
Алгоритм
Сложность алгоритма: . Затраты памяти: . Однако скорость работы алгоритма может быть улучшена до .
В основу алгоритма положена идея динамического программирования по префиксу. Будем хранить матрицу , где — расстояние Дамерау — Левенштейна между префиксами строк и , длины префиксов — и соответственно.
Будем заполнять матрицу следующим образом, используя рекуррентное соотношение, описанное ниже:
for i from 0 to m
for j from 0 to n
вычислить D(i, j);
return D(m, n);
Для учёта транспозиции потребуется хранение следующей информации. Инвариант:
— индекс последнего вхождения в
— на i-й итерации внешнего цикла индекс последнего символа
Тогда если на очередной итерации внутреннего цикла положить: , то
, где
Доказательства требует лишь утверждение , так как остальные формулы обосновываются так же, как и в доказательстве алгоритма Вагнера — Фишера. Но действительно, при редактировании подпоследовательности несколько раз всегда существует оптимальная последовательность операций одного из двух видов:
- Переставить местами соседние символы, затем вставить некоторое количество символов между ними;
- Удалить некоторое количество символов, а затем переставить местами символы, ставшие соседними.
Тогда если символ встречался в на позиции , а символ встречался в на позиции ; то может быть получена из удалением символов , транспозицией ставших соседними и и вставкой символов . Суммарно на это будет затрачено операций. Следовательно выражение с условием выбирает оптимальную последовательность операций, рассматривая случай с транспозицией и без неё.
Псевдокод алгоритма:
int DamerauLevenshteinDistance(char S[1..m], char T[1..n])
// Обработка крайних случаев
if (S == "") then
if (T == "") then
return 0
else
return n
else if (T == "") then
return m
declare int D[0..m + 1, 0..n + 1] // Динамика
declare int INF = m + n // Большая константа
// База индукции
D[0, 0] = INF;
for i from 0 to m
D[i + 1, 1] = i
D[i + 1, 0] = INF
for j from 0 to n
D[1, j + 1] = j
D[0, j + 1] = INF
declare sd[0..количество различных символов в S и T]
//для каждого элемента C алфавита задано значение sd[C]
foreach (char Letter in (S + T))
if Letter не содержится в sd
добавить Letter в sd
sd[Letter] = 0
for i from 1 to m
declare int DB = 0
for j from 1 to n
declare int i1 = sd[T[j]]
declare int j1 = DB
if S[i] == T[j] then
D[i + 1, j + 1] = D[i, j]
DB = j
else
D[i + 1, j + 1] = minimum(D[i, j], D[i + 1, j], D[i, j + 1]) + 1
D[i + 1, j + 1] = minimum(D[i + 1, j + 1], D[i1, j1] + (i - i1 - 1) + 1 + (j - j1 - 1))
sd[S[i]] = i
return D[m + 1, n + 1]