Теорема о нижней оценке для сортировки сравнениями — различия между версиями
(изменил картинку) |
м |
||
Строка 6: | Строка 6: | ||
Теорема | Теорема | ||
|about=о нижней оценке для сортировки сравнениями | |about=о нижней оценке для сортировки сравнениями | ||
− | |statement=В худшем случае любой алгоритм сортировки сравнениями выполняет <tex>\Omega(n \log n)</tex> сравнений, где <tex>n</tex> {{---}} число сортируемых элементов | + | |statement=В худшем случае любой алгоритм сортировки сравнениями выполняет <tex>\Omega(n \log n)</tex> сравнений, где <tex>n</tex> {{---}} число сортируемых элементов. |
− | |proof=Любому алгоритму сортировки сравнениями можно сопоставить дерево. В нем | + | |proof=Любому алгоритму сортировки сравнениями можно сопоставить дерево. В нем узлам соответствуют операции сравнения элементов, ребрам {{---}} переходы между состояниями алгоритма, а листьям {{---}} конечные перестановки элементов (соответствующие завершению алгоритма сортировки). Необходимо доказать, что высота такого дерева для любого алгоритма сортировки сравнениями не меньше чем <tex>O(n \log n)</tex>, где <tex>n</tex> {{---}} количество элементов. |
При сравнении двух элементов, существует два возможных исхода (<tex>a_i < a_j</tex> и <tex>a_i \geq a_j</tex>), значит, каждый узел дерева имеет не более двух сыновей. Всего существует <tex>n!</tex> различных перестановок <tex>n</tex> элементов, значит, число листьев нашего дерева не менее <tex>n!</tex> (в противном случае некоторые перестановки были бы не достижимы из корня, а, значит, алгоритм не правильно работал бы на некоторых исходных данных). | При сравнении двух элементов, существует два возможных исхода (<tex>a_i < a_j</tex> и <tex>a_i \geq a_j</tex>), значит, каждый узел дерева имеет не более двух сыновей. Всего существует <tex>n!</tex> различных перестановок <tex>n</tex> элементов, значит, число листьев нашего дерева не менее <tex>n!</tex> (в противном случае некоторые перестановки были бы не достижимы из корня, а, значит, алгоритм не правильно работал бы на некоторых исходных данных). | ||
Строка 19: | Строка 19: | ||
Докажем, что двоичное дерево с <tex>n!</tex> листьями имеет глубину <tex>\Omega(n \log n)</tex>: | Докажем, что двоичное дерево с <tex>n!</tex> листьями имеет глубину <tex>\Omega(n \log n)</tex>: | ||
− | <tex> h | + | <tex> h \geq \log_2 n! = \log_2 1 + \log_2 2 + \ldots + \log_2 n ></tex> <tex>n/2 \log_2 (n/2) = n/2(\log_2 n - 1) = \Omega (n \log n)</tex> |
Итак, для любого алгоритма сортировки сравнениями, существует такая перестановка, на которой он выполнит <tex>\Omega(n \log n)</tex> сравнений, ч. т. д. | Итак, для любого алгоритма сортировки сравнениями, существует такая перестановка, на которой он выполнит <tex>\Omega(n \log n)</tex> сравнений, ч. т. д. |
Версия 17:20, 10 мая 2012
Определение: |
Сортировка сравнениями — алгоритм сортировки, который совершает операции сравнения элементов, но никак не использует их внутреннюю структуру. |
Теорема (о нижней оценке для сортировки сравнениями): |
В худшем случае любой алгоритм сортировки сравнениями выполняет сравнений, где — число сортируемых элементов. |
Доказательство: |
Любому алгоритму сортировки сравнениями можно сопоставить дерево. В нем узлам соответствуют операции сравнения элементов, ребрам — переходы между состояниями алгоритма, а листьям — конечные перестановки элементов (соответствующие завершению алгоритма сортировки). Необходимо доказать, что высота такого дерева для любого алгоритма сортировки сравнениями не меньше чем , где — количество элементов.При сравнении двух элементов, существует два возможных исхода ( и ), значит, каждый узел дерева имеет не более двух сыновей. Всего существует различных перестановок элементов, значит, число листьев нашего дерева не менее (в противном случае некоторые перестановки были бы не достижимы из корня, а, значит, алгоритм не правильно работал бы на некоторых исходных данных).Пример дерева для алгоритма сортировки элементов:
Итак, для любого алгоритма сортировки сравнениями, существует такая перестановка, на которой он выполнит сравнений, ч. т. д. |
Источники
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Глава 8. Сортировка за линейное время // Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. — 2-е изд. — М.: Вильямс, 2005. — 1296 с
- Андрей Калинин Сортировка за линейное время
- Конспект по курсу "Алгоритмы и алгоритмические языки" (доказательство теоремы через формулу Стирлинга).