Класс P — различия между версиями
Tsar (обсуждение | вклад) м (→Примеры задач и языков из P: Союз "и" нелеп) |
Tsar (обсуждение | вклад) (Добавил что-то по пункту "7" из требований АС) |
||
| Строка 86: | Строка 86: | ||
<tex>\mathrm{CFL} \subset \mathrm{TS}(n^3, n^2) \subset \mathrm{P}</tex> | <tex>\mathrm{CFL} \subset \mathrm{TS}(n^3, n^2) \subset \mathrm{P}</tex> | ||
Первое включение выполняется благодаря существованию [[Алгоритм Эрли|алгоритма Эрли]]. | Первое включение выполняется благодаря существованию [[Алгоритм Эрли|алгоритма Эрли]]. | ||
| + | }} | ||
| + | |||
| + | == Пример P-полной задачи == | ||
| + | {{Определение | ||
| + | |definition= | ||
| + | <tex>CIRCVAL = \{\langle C, x_1,\ldots,x_n\rangle \bigm| C(x_1,\ldots,x_n) = 1\}</tex>, где <tex>C</tex> это логическая схема. | ||
| + | }} | ||
| + | |||
| + | {{Теорема | ||
| + | |statement = | ||
| + | <tex>CIRCVAL</tex> {{---}} <tex>\mathrm{P}</tex>-[[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи#Определения трудных и полных задач|полная]] задача. | ||
}} | }} | ||
Версия 17:58, 4 июня 2012
Содержание
Определение
| Определение: |
| Класс — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время, то есть: [1]. |
Итого, язык лежит в классе тогда и только тогда, когда существует такая детерминированная машина Тьюринга , что:
- завершает свою работу за полиномиальное время на любых входных данных;
- если на вход машине подать слово , то она допустит его;
- если на вход машине подать слово , то она не допустит его.
Свойства класса P
| Теорема: |
Класс замкнут относительно сведения по Карпу. . |
| Доказательство: |
|
Пусть — разрешитель , работающий за полиномиальное время. . Построим разрешитель для языка . if () return true return falseРазрешитель работает за полиномиальное время, так как композиция полиномов есть полином. |
| Теорема: |
. В частности, из этого следует, что . |
| Доказательство: |
|
Понятно, что . Докажем, что . . Пусть — разрешитель , работающий за полиномиальное время и использующий оракул языка . Пусть — разрешитель , работающий за полиномиальное время . Представим себе разрешитель , работающий как , но использующий вместо оракула . Его время работы ограничено сверху значением , что является полиномом (обращений к максимум ; на вход для можем подать максимум данных, так как больше сгенерировать бы не успели). Значит, . |
| Теорема: |
Класс замкнут относительно операций объединения, пересечения, конкатенации, замыкания Клини и дополнения. Если , то: , , , и . |
| Доказательство: |
|
Докажем замкнутость замыкания Клини. Остальные доказательства строятся аналогично. Пусть — разрешитель , работающий за полиномиальное время. Построим разрешитель для языка . //позиции, где могут заканчиваться слова, принадлежащие for () for () if () { if () return true } return falseХудшая оценка времени работы разрешителя равна , так как в множестве может быть максимум элементов, значит итерироваться по множеству можно за , если реализовать его на основе битового массива, например; при этом операция добавления элемента в множество будет работать за . Итого, разрешитель работает за полиномиальное время (так как произведение полиномов есть полином). Значит . |
Примеры задач и языков из P
Класс задач, разрешимых за полиномиальное время достаточно широк, вот несколько его представителей:
- определение связности графов;
- вычисление наибольшего общего делителя;
- задача линейного программирования;
- проверка простоты числа.[2]
Но существуют задачи не из , так как из теоремы о временной иерархии следует, что .
| Теорема: |
Класс регулярных языков входит в класс , то есть: . |
| Доказательство: |
| Теорема: |
Класс контекстно-свободных языков входит в класс , то есть: . |
| Доказательство: |
|
Первое включение выполняется благодаря существованию алгоритма Эрли. |
Пример P-полной задачи
| Определение: |
| , где это логическая схема. |
| Теорема: |
— -полная задача. |